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1. The 2-cocycle

Let F = F2d and consider the group extension

M0
n −→ SLnF[t]/(t3)

π−→ SLnF[t]/(t2)

where M0
n is the subgroup of Ker(π) given by

M0
n = {1 + Xt2 | det(1 + Xt2) = 1}.

Since

det(


1 + X11t

2 X12t
2 . . . . . . X1nt

2

X21t
2 1 + X22t

2 . . . . . . X2nt
2

...
...

...
...

...
Xn1t

2 Xn2t
2 . . . . . . 1 + Xnnt

2

)

≡ 1 + Trace(X)t2 (modulo t3)

so that M0
n is isomorphic to the additive abelian group given by the trace

zero n× n matrices with entries in in F.
Choose a map of sets, which is a right inverse to π,

h : SLnF[t]/(t2) −→ SLnF[t]/(t3).

If X ∈ SLnF[t]/(t2) we may write X as X = X0 + X1t where X0 ∈ SLnF
and X1 is a trace zero n× n matrix with entries in in F. The formula for the
determinant shows that there is an n × n matrix X2 with entries in F such
that h(X) = X0 + X1t + X2t

2 ∈ SLnF[t]/(t3).

Example 1.1. Consider the 2× 2 matrix

x =

(
1 t
t 1

)
∈ SL2F[t]/(t2).

We have x2 = 1 ∈ SL2F[t]/(t2). In GL2F[t]/(t3) we have

y =

(
1 + t2 t

t 1

)
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which satisfies π(y) = x and

det(y) = 1 + t2 + t2 ≡ 1

so that we may choose h(x) = y. However

h(x)2 = y2 =

(
1 + t2 t

t 1

) (
1 + t2 t

t 1

)
=

(
1 + t2 0

0 1 + t2

)
6= 1.

Therefore the restricted group extension

M0
n −→ π−1(〈x〉) π−→ 〈x〉

is not split.

Next we are going to write down explicitly the 2-cycle

∆ : SLnF[t]/(t2)× SLnF[t]/(t2) −→ M0
n,

in the convention of the inhomogeneous bar resolution ([?] p. 41). In terms
of a section h of π the formula is

∆([X1|X2]) = h(X1)h(X2)h(X1X2)
−1 ∈ M0

n.

We need to show that ∆ is a 2-cycle, which is the condition

∆(δ(X0|X1|X2]) = 1.

Explicitly

X0(∆([X1|X2]))(∆([X0X1|X2]))
−1∆([X0|X1X2])(∆([X0|X1]))

−1 = 1.

In the first of these four terms the action of X0 on ∆([X1|X2]) is by reduction
X0 7→ X0 ∈ SLnF following by conjugation.

Write

A = X0(∆([X1|X2])) = X0(h(X1)h(X2)h(X1X2)
−1)X

−1

0 ,

B−1 = ∆([X0X1|X2]) = h(X0X1)h(X2)h(X0X1X2)
−1,

B = h(X0X1X2)h(X2)
−1h(X0X1)

−1,

C = ∆([X0|X1X2]) = h(X0)h(X1X2)h(X0X1X2)
−1,

D−1 = ∆([X0|X1]) = h(X0)h(X1)h(X0X1)
−1,

D = h(X0X1)h(X1)
−1h(X0)

−1.

Now we have

∆(δ(X0|X1|X2]) = ABCD = ACBD.
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Therefore

∆(δ(X0|X1|X2])

= X0(h(X1)h(X2)h(X1X2)
−1)X

−1

0 ×

h(X0)h(X1X2)h(X0X1X2)
−1 × h(X0X1X2)h(X2)

−1h(X0X1)
−1

×h(X0X1)h(X1)
−1h(X0)

−1

= X0(h(X1)h(X2)h(X1X2)
−1)X

−1

0 ×

h(X0)h(X1X2)× h(X2)
−1h(X1)

−1h(X0)
−1

= X0(h(X1)h(X2)h(X1X2)
−1)X

−1

0 ×

X0h(X1X2)× h(X2)
−1h(X1)

−1X
−1

0

because h(X1X2)× h(X2)
−1h(X1)

−1 ∈ M0
n and h(X0) conjugates M0

n by first
reducing to X0. Therefore

∆(δ(X0|X1|X2])

= X0h(X1)h(X2)h(X1X2)
−1h(X1X2)× h(X2)

−1h(X1)
−1X

−1

0

= 1,

as required.
This shows that there is a cohomology class

[∆] ∈ H2(SLnF[t]/(t2); M0
n)

which must be non-zero since the restriction to H2(〈x〉; M0
n) represents the

non-split extension of Example ??.
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Now consider the composition

H2(SLnF[t]/(t2); M0
n)⊗H2(SLnF[t]/(t2); M0

n)

↓ evaluation

H0(SLnF[t]/(t2); M0
n ⊗M0

n)

↓ ∼=

(M0
n ⊗M0

n)SLnF[t]/(t2)

↓ T

F

where T (A⊗B) = Trace(AB).
Next we shall attempt to calculate the image under this map, but without

the final map T .

Theorem 1.2. (Charlap and Vasquez)
The above composite map, but without the final map T , is the differential

d2 : E2
2,1 = H2(SL2F[t]/(t2); M0

2 ) ∼= F⊕ F −→ E2
0,2 = (M0

n ⊗M0
n)SLnF[t]/(t2).

Firstly let us make the pairing explicit on the chain level. If (B∗G, d) is the
inhomogeneous bar resolution with left free G-action then H2(SLnF[t]/(t2); M0

n)
is the 2-dimensional homology of the cochain complex

HomSLnF[t]/(t2)(B∗SLnF[t]/(t2), M0
n)

with differential d∗ = (− · d) and SLnF[t]/(t2) acting on the left of M0
n by

reduction to SLnF) following by conjugation X(A) = XAX
−1

. The homology
H2(SLnF[t]/(t2); M0

n) is the 2-dimensional homology of the chain complex

M0
n ⊗SLnF[t]/(t2) B∗SLnF[t]/(t2)

with differential 1 ⊗ d. This time SLnF[t]/(t2) acts on the right of M0
n by

reduction to SLnF) following by conjugation (A)X = X
−1

AX.
With these actions we have

A⊗SLnF[t]/(t2) X(b) = X
−1

AX ⊗SLnF[t]/(t2) b ∈ M0
n ⊗SLnF[t]/(t2) B∗SLnF[t]/(t2)

so that if

f ∈ HomSLnF[t]/(t2)(B∗SLnF[t]/(t2), M0
n)

then

A⊗Xf(b)X
−1

= X
−1

AX ⊗ f(b) ∈ (M0
n ⊗M0

n)SLnF[t]/(t2)

so that 1 ⊗ f gives a well-defined map which lands in the SLnF[t]/(t2)-
coinvariant quotient of M0

n ⊗ M0
n where the action is the diagonal action
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on the left of each M0
n-factor. These invariants are mapped in a well-defined

manner to F by the trace of the product.
Consider matrices of the form, λ, µ ∈ F∗

xλ,µ =

(
1 λt
µt 1

)
∈ SL2F[t]/(t2).

We have (
1 λt
µt 1

) (
1 λt
µt 1

)
=

(
1 0
0 1

)
and xλ,µ commutes with xλ′,µ′ . In fact(

1 λt
µt 1

) (
1 λ′t

µ′t 1

)
=

(
1 (λ + λ′)t

(µ + µ′)t 1

)
.

Also a lift of xλ,µ to SL2F[t]/(t3) is given by(
1 + λµt2 λt

µt 1

)
.

The square of this lift is given by(
1 + λµt2 λt

µt 1

) (
1 + λµt2 λt

µt 1

)
=

(
1 + λµt2 0

0 1 + λµt2

)
.

Therefore for each X, λ, µ we have a cycle

X ⊗SLnF[t]/(t2) ([xλ,µ|xλ.µ]− [1|1]) ∈ M0
n ⊗SLnF[t]/(t2) B2SLnF[t]/(t2)

since xλ,µ maps to the identity in SL2F.
The image of

[X ⊗SLnF[t]/(t2) ([xλ,µ|xλ.µ]− [1|1])]⊗ [∆]

in
(M0

n ⊗M0
n)SLnF[t]/(t2)

is the class of

d2(X ⊗SLnF[t]/(t2) [xλ,µ|xλ,µ]) = X ⊗
(

λµt2 0
0 λµt2

)
.

Choosing X to equal the 2× 2 identity matrix gives a map to a copy of F
in (M0

n ⊗M0
n)SLnF[t]/(t2).

Next consider the matrix

zλ =

(
1 + λµt 0

0 1 + λt

)
∈ SL2F[t]/(t2).

We have

z2
λ =

(
1 + λ2t2 0

0 1 + λ2t2

)
= 1.

We may choose

h(zλ) =

(
1 + λt + λ2t2 0

0 1 + λt

)
5



since det(h(zλ) ≡ 1+λ2t2+λ2t2 ≡ 1 (modulo t3) so that h(zλ) ∈ SL2F[t]/(t3).
In addition

h(zλ) =

(
1 + λt + λ2t2 0

0 1 + λt

) (
1 + λt + λ2t2 0

0 1 + λt

)
= (1+λ2t2)I2.

Therefore X ⊗SL2F[t]/(t2) ([zλ|zλ]− [1|1]) is a 2-cycle and

d2(X ⊗SL2F[t]/(t2) ([zλ|zλ]− [1|1])) = X ⊗
(

λ2t2 0
0 λ2t2

)
.

Therefore
d2(X ⊗SL2F[t]/(t2) ([zλ|zλ]− [xλ,λ|xλ,λ]) = 0.

Question 1.3. Is

X ⊗SL2F[t]/(t2) ([zλ|zλ]− [xλ,λ|xλ,λ])

non-zero in E2
2,1? In ([?] p.519 Prop 5.19) it is shown that E2

2,1
∼= F ⊕ F by

an elaborate series of calculations. Perhaps the details of these would answer
this question?

This question will be resolved in Section Three.

Example 1.4. Consider SL2F2 = GL2F2
∼= Σ3 generated by

τ =

(
0 1
1 0

)
, σ =

(
0 1
1 1

)
satisfying τ 2 = 1 = σ3, τστ = σ2.

SL2F2[t]/(t
2) = Σ3 ∝ M0

2 where

U =

(
1 0
0 1

)
, V =

(
0 1
0 0

)
. W =

(
0 0
1 0

)
and τ(U) = U = σ(U), τ(V ) = W, σ(V ) = W, σ(W ) = U + V + W .

However there is another Σ3-action on M0
2 given by τ(U) = U = σ(U), τ(V ) =

W, σ(V ) = W, σ(W ) = V + W .
If α : M0

2 −→ M0
2 transport the first action to the second, assume that the

matrix of α with respect to the ordered basis is

α =

 a a′ a′′

b b′ b′′

c c′ c′′

 .

Therefore α(τ(U)) = τ(α(U)) implies that

aU + bV + cW = aU + cV + bW

so that b = c. Also α(σ(U)) = σ(α(U)) implies that

aU + bV + bW = aU + bW + b(V + W ) = aU + bV

so that b = 0 and a = 1. Next consider α(τ(V )) = τ(α(V )) which implies

a′′U + b′′V + c′′W = τ(a′U + b′V + c′W ) = a′U + b′W + c′V
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so that a′ = a′′, b′′ = c′ and c′′ = b′. The relation α(σ(V )) = σ(α(V )) which
implies

a′U + c′V + b′W = σ(a′U + b′V + c′W ) = a′U + b′W + c′(V + W )

so that c′ = 0. The relation α(σ(W )) = σ(α(W )) implies

U + a′U + b′V + a′U + b′W = σ(a′U + b′W ) = a′U + b′(V + W )

so that

α =

 1 1 1
0 1 0
0 0 1

 .

This matrix satisfies α2 = 1.

2. The construction of the spectral sequence

The homology spectral sequence used in [?]

E2
r,s = Hr(SLnF[t]/(t2); Hs(M

0
n)) =⇒ Hr+s(SLnF[t]/(t3); Z),

whose differentials have the form

dt : Et
r,s −→ Et

r−t,s+t−1,

is an example of the first Grothendieck spectral sequence ([?] p.297) of a
bicomplex (A∗,∗, dI + dII).

Let us partially recall its construction. We have two group extensions

G3
n −→ SLnF[t]/(t3) −→ SLnF

and

G2
n −→ SLnF[t]/(t2) −→ SLnF.

Recall that the inhomogeneous bar resolution of G has a differential

∂([x1| . . . |xm])

= x1[x2| . . . |xm] +
∑m−1

i=1 (−1)i[x1| . . . |xixi+1| . . . |xm]

+(−1)m[x1| . . . |xm−1].

Set

Ar,s = ⊕r
a=0 Cr−a,a,s

and

Ci,j,k = Z⊗SLnF[t]/(t3) BkG
3
n ⊗ (BjG

2
n ⊗BiSLnF).

Here g ∈ SLnF acts by conjugation g(y[y1| . . . yu]) = g(y)[g(y1)| . . . g(yu)] on
B∗G

3
n and B∗G

2
n. G3

n acts as usual on its inhomogeneous bar resolution and
on that of G2

n via reduction and then the usual G2
n-action on B∗G

2
n. Putting

these actions together - diagonally - gives an SLnF[t]/(t2)-action making

BjG
2
n ⊗BiSLnF
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into a free resolution of the semi-direct product SLnF[t]/(t2). Therefore A∗,∗
is a free resolution of SLnF[t]/(t3) with the differential dI + dII given by

dI(x) = (−1)k1⊗ ∂ ⊗ 1 + (−1)k+j1⊗ 1⊗ ∂)(x), x ∈ Ci,j,k

and

dII(x) = (∂ ⊗ 1⊗ 1)(x), x ∈ Ci,j,k.

Note that

dI : Ar,s −→ Ar−1,s and dII : Ar,s −→ Ar,s−1.

The filtration which gives rise to the first spectral sequence is

F p(⊕r+s=m Ar,s) = ⊕r+s=m,s≤p Ar,s

so that F p−1 ⊆ F p and dII(F
p) ⊆ F p−1. In addition

F p(⊕r+s=m Ar,s)/F
p−1(⊕r+s=m Ar,s) ∼= Am−p,p

and E1
m−p,p is the homology at Am−p,p of the complex

. . .
dII−→ Am−p,p

dII−→ Am−p,p−1
dII−→ . . . .

The differential dI induces a chain complex

. . .
dI−→ E1

m−p,p

dI−→ E1
m−p−1,p

dI−→ . . .

whose homology at E1
m−p,p is E2

m−p,p = HIHII .
We have

Am−p,p = ⊕m−p
a=0 Z⊗SLnF[t]/(t3) BpG

3
n ⊗BaG

2
n ⊗Bm−p−aSLnF

↓ dII = ∂ ⊗ 1⊗ 1

Am−p,p−1 = ⊕m−p
a=0 Z⊗SLnF[t]/(t3) Bp−1G

3
n ⊗BaG

2
n ⊗Bm−p−aSLnF

so that

E1
m−p,p = Hp(G

3
n)⊗SLnF[t]/(t2) B̃m−pZ⊗SLnF[t]/(t2)

where B̃∗Z⊗SLnF[t]/(t2) is a free SLnF[t]/(t2)-resolution of Z so that

(HIHII)r,s = E2
r,s
∼= Hr(SLnF[t]/(t2); Hs(M

0
n)),

as required.
The successive differentials on the successive Et

∗,∗’s eventually gives a “ter-
minal” answer E∞

∗,∗ which is isomorphic to the associated graded of the filtra-

tion on Hr+s(SLnF[t]/(t3); Z) corresponding to the images of the homology
the [F pA∗,∗)’s.

It is show in [?] that, in the spectral sequence we are considering,

F 0 = 0, F 1/F 0 ∼= F⊕ F, F 2/F 1 ∼= F, F 3/F 2 ⊗ Z2 = 0.
8



3. Addressing Question ??

In this section I shall compute the injective transfer map

i∗ : H2(SL2F2[t]/(t
2); M0

2 F2) −→ H2(〈τ〉 ∝ M0
2 F2; M

0
2 F2).

This map is injective because

SL2F2 = GL2F2
∼= Σ3 = {τ, σ |τ 2 = 1 = σ3, τστ = σ2}

and

SL2F2[t]/(t
2) ∼= Σ3 ∝ M0

2 F2.

If z generates a cyclic group of order n write P∗(g)
ε−→ Z for the free

resolution of the trivial module Z of the form

. . . −→ Z[〈g〉]e2(g) −→ Z[〈g〉]e1(g) −→ Z[〈g〉]e0(g) −→ Z

where d(e2m(g)) = (1+g+ . . .+gn−1)e2m−1(g), d(e2m−1(g)) = (1−g)e2m−2(g)
and ε(e0(g)) = 1.

Since M0
2 = 〈U〉 ⊕ 〈V 〉 ⊕ 〈W 〉 a free Z[M0

2 ]-resolution is given by

P∗(U)⊗ P∗(V )⊗ P∗(W )

with differential on Pa(U)⊗ Pb(V )⊗ Pc(W )

d = d⊗ 1⊗ 1 + (−1)ad⊗ 1⊗ 1 + (−1)a+bd⊗ 1⊗ 1.

Now to construct a free Σ3 = 〈τ〉 ∝ 〈σ〉-resolution. First we must decide
how to let τ act on the left of P∗(σ). The action on the inhomogeneous bar
resolution of 〈σ〉 would be

τ(g[g1|g2| . . . |gt]) = τ(g)[τ(g1)|τ(g2)| . . . |τ(gt)

and the map ([?] p.17)

φ : P∗(σ) −→ B∗〈σ〉
is given by

φ(ei(σ)) =


∑

I [σi1|σ|σi2|σ| . . . |σis |σ] if i = 2s∑
I [σ|σi1 |σ|σi2 |σ| . . . |σis |σ] if i = 2s + 1.

It seems difficult to define the involution τ directly on the small resolution
so form the tensor product

Cs = ⊕a+b=s Ba〈σ〉 ⊗ Pb(τ)

with differential d = d⊗1+(−1)a1⊗d and Σ3-action given by σ(x⊗y) = σ·x⊗y
and τ(x⊗y) = τ(x)⊗τ ·y. This is a chain complex of free Σ3 modules because

σ(d(x⊗ y)) = σ · d(x)⊗ y + (−1)aσ · x⊗ d(y)

= d(σ · x)⊗ y + (−1)aσ · x⊗ d(y)
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and
τ(d(x⊗ y)) = τ(d(x))⊗ τ · y + (−1)aτ(x)⊗ τ · d(y)

= d(τ(x))⊗ τ · y + (−1)aτ(x)⊗ τ · d(y).

Furthermore

τ(σ(x⊗ y)) = τ(σ · x⊗ y) = τ(σ · x)⊗ τ · y = τ(σ) · τ(x)⊗ τ · y
while

σ2(τ(x⊗ y)) = σ2(τ(x)⊗ τ · y) = σ2 · τ(x)⊗ τ · y) = τ(σ) · τ(x)⊗ τ · y
which shows that the actions provide a Σ3-module structure.

Next we need a Σ3-action on the resolution for M0
2 F2. This does not seem

to work on the resolution P∗(U)⊗P∗(V )⊗P∗(W ). Recall that the action on
U, V,W in the semi-direct product is given by

τ(U) = U = σ(U), τ(V ) = W, σ(V ) = W, σ(W ) = U + V + W.

This suggests the action

τ(es(U)) = es(U) = σ(es(U)), τ(es(V )) = es(W ), τ(es(W )) = es(V )

and
σ(es(V )) = es(W ), σ(es(W )) = es(U) + es(V ) + es(W ).

This is indeed a F2[Σ3]-action because

σ3(es(V )) = σ2(es(W )) = σ(es(U) + es(V ) + es(W ))

= es(U) + es(W )) + σ(es(U) + es(V ) + es(W ))

≡ es(V ) (modulo 2)

which will almost suffice for our purposes since we are eventually going to
work in cohomology with coefficients in M0

2 .
However, the problem is that P∗(U) ⊗ P∗(V ) ⊗ P∗(W ) is not preserved

by this action, which spreads out onto something more like the symmetric
algebra.

Therefore we had better use the inhomogeneous bar resolution BM0
2 . Since

g ∈ Σ3 acts on the group M0
2 as described above it acts on the bar resolution

by
g(z0[z1| . . . zm]) = g(z0)[g(z1)| . . . g(zm)].

Form the Z[SL2F2[t]/(t
2)]-resolution of Z of the form

BM0
2 ⊗ C∗

with g ∈ Σ3 acting via
g(a⊗ c) = g(a)⊗ g · c

and m ∈ M0
2 acting via

m(a⊗ c) = m · a⊗ c.
10



We have to verify that both sides of

(g, 1)(1, g−1(m)) = (g,m) = (1, m)(g, 1) = (g,m) ∈ Σ3 ∝ M0
2

which follows since

(g, 1)(1, g−1(m))(a⊗ c) = (g, 1)(g−1(m) · a⊗ c) = m · g(a)⊗ g · c

while

(1, m)(g, 1)(a⊗ c) = (1, m)(g(a)⊗ g · c) = m · g(a)⊗ g · c.

Now the first of the two 2-cycle representatives which we wish to map is,
in terms of the inhomogeneous bar resolution,

I2 ⊗ ([(1 + t)I2|(1 + t)I2]− [1|1]) ∈ M0
2 ⊗SL2F2[t]/(t2) B∗SL2F2[t]/(t

2).

We know that this represents a non-zero homology class, because d2 is
non-zero on it, and we can see that it originates in

M0
2 ⊗〈U〉 B∗〈U〉

so that in terms of the other resolution it is represented by

I2 ⊗ ([(1 + t)I2|(1 + t)I2]− [1|1])⊗ 1 ∈ M0
2 ⊗SL2F2[t]/(t2) BM0

2 ⊗ C∗

where 1 ∈ C0 on the right and the other 1 is the neutral element of the group.
The transfer is induced by the chain map from

M0
2 ⊗SL2F2[t]/(t2) BM0

2 ⊗ C∗

to

M0
2 ⊗〈τ〉∝M0

2
BM0

2 ⊗ C∗

which sends X ⊗SL2F2[t]/(t2) a⊗ c to∑
g=1,σ,σ2

(X)g−1 ⊗〈τ〉∝M0
2

g(a)⊗ g · c

so that the transfer of

I2 ⊗ ([(1 + t)I2|(1 + t)I2]− [1|1])⊗ 1 = I2 ⊗ ([U |U ]− [1|1])⊗ 1]

is represented by

I2 ⊗ ([U |U ]− [1|1])⊗ (1 + σ + σ2) · 1.

Next we want to calculate the image under the transfer of

I2 ⊗SL2F[t]/(t2) ([x1,1|x1,1]− [1|1])

= I2 ⊗SL2F[t]/(t2) ([V + W |V + W ])− [1|1])⊗ 1
11



which equals∑
g=1,σ,σ2 I2 ⊗〈τ〉∝M0

2
([g(V ) + g(W )|g(V ) + g(W )]− [1|1])⊗ g · 1

= I2 ⊗〈τ〉∝M0
2

([V + W |V + W ]− [1|1])⊗ 1

+I2 ⊗〈τ〉∝M0
2

([W + U + V + W |W + U + V + W ]− [1|1])⊗ σ · 1

+I2 ⊗〈τ〉∝M0
2

([U + V + W + V )|U + V + W + V ]− [1|1])⊗ σ2 · 1

= I2 ⊗〈τ〉∝M0
2

([V + W |V + W ]− [1|1])⊗ 1

+I2 ⊗〈τ〉∝M0
2

([U + V |U + V ]− [1|1])⊗ σ · 1

+I2 ⊗〈τ〉∝M0
2

([U + W )|U + W ]− [1|1])⊗ σ2 · 1.

The M0
2 on the left of

M0
2 ⊗〈τ〉∝M0

2
BM0

2 ⊗ C∗

is the direct sum of the trivial Z[〈τ〉 ∝ M0
2 ]-module F〈U〉 and the module

induced from the trivial Z[M0
2 ]-module. Both our 2-cycles are in the former

summand because of the I2 ⊗ . . . tensor factor.
This summand is H∗(〈τ〉 ∝ M0

2 ; Z/2). However there is a group isomor-
phism

〈τ〉 ∝ M0
2
∼= 〈U〉 × (〈τ〉 ∝ 〈V, W 〉) ∼= C2 ×D8.

Therefore by the Kunneth formula the first summand is

H∗(C2; Z/2))⊗H∗(D8; Z/2).

The mod 2 cohomology of these groups is computed in detail in ([?] p.16 and
p.24).

REWRITE FROM HERE ON
Form the F2[SL2F2[t]/(t

2)]-resolution of F2 of the form

P∗(U)⊗ P∗(V )⊗ P∗(W )⊗ C∗

with g ∈ Σ3 acting via

g(a⊗ b⊗ c⊗ d) = g(a)⊗ g(b)⊗ g(c)⊗ g · d
and m ∈ M0

2 acting via

m(a⊗ b⊗ c⊗ d) = a⊗ b⊗ c⊗m · d.

Then, if F2[SL2F2[t]/(t
2)] acts on M0

2 on the right by mapping to SL2F2 and
then conjugating on the right (X)Y = Y −1XY so that

((X)Y1)Y2) = (Y −1
1 XY1)Y2 = Y −1

2 Y −1
1 XY1Y2 = (X)(Y1Y2).

Our model for H2(SL2F2[t]/(t
2); M0

n) is the 2-dimensional homology of

M0
2 ⊗SL2F2[t]/(t2) P∗(U)⊗ P∗(V )⊗ P∗(W )⊗ C∗.

12



The transfer is induced by the chain map from the above complex to

M0
2 ⊗〈τ〉∝M0

2
P∗(U)⊗ P∗(V )⊗ P∗(W )⊗ C∗

which sends X ⊗SL2F2[t]/(t2) a⊗ b⊗ c⊗ d to∑
g=1,σ,σ2

(X)g−1 ⊗〈τ〉∝M0
2

g(a⊗ b⊗ c⊗ d).

Now the first of the two 2-cycle representatives which we wish to map is,
in terms of the inhomogeneous bar resolution,

I2 ⊗ [(1 + t)I2|(1 + t)I2] ∈ M0
2 ⊗SL2F2[t]/(t2) B∗SL2F2[t]/(t

2).

We know that this represents a non-zero homology class, because d2 is
non-zero on it, and we can see that it originates in

M0
2 ⊗〈U〉 B∗〈U〉

so that in terms of the other resolution it must be represented by

I2⊗〈τ〉∝M0
2
e2(U)⊗e0(V )⊗e0(W )⊗1 ∈ M0

2⊗〈τ〉∝M0
2
P∗(U)⊗P∗(V )⊗P∗(W )⊗C∗.

Since I2 is central the image under the transfer of this element is

I2 ⊗〈τ〉∝M0
2

e2(U)⊗ e0(V )⊗ e0(W )⊗ 1

+I2 ⊗〈τ〉∝M0
2

e2(U)⊗ e0(W )⊗ (e0(U) + e0(V ) + e0(W ))⊗ σ · 1

+I2 ⊗〈τ〉∝M0
2

e2(U)⊗ (e0(U) + e0(V )

+e0(W ))⊗ (e0(U) + e0(W ) + (e0(U) + e0(V ) + e0(W ))⊗ σ2 · 1

= I2 ⊗〈τ〉∝M0
2

e2(U)⊗ (1 + σ + σ2) · 1.

The second of the two 2-cycle representatives which we wish to map is, in
terms of the inhomogeneous bar resolution,

I2 ⊗ [V + W |V + W ] ∈ M0
2 ⊗SL2F2[t]/(t2) B∗SL2F2[t]/(t

2).

4. Another group

I want to examine in detail the group of matrices in GL2F2[t]/(t
3) which

reduce to matrices in SL2F2[t]/(t
2). Firstly I shall list all the elements of

13



SL2F2[t]/(t
2).

I =

(
1 0
0 1

)
, σ =

(
0 1
1 1

)
, σ2 =

(
1 1
1 0

)

τ =

(
0 1
1 0

)
, τσ =

(
1 1
0 1

)
, τσ2 =

(
1 0
1 1

)

U =

(
1 + t 0

0 1 + t

)
, V =

(
1 t
0 1

)
, W =

(
1 0
t 1

)

UV =

(
1 + t t

0 1 + t

)
, UW =

(
1 + t 0

t 1 + t

)
, V W =

(
1 t
t 1

)

UV W =

(
1 + t t

t 1 + t

)
, U e(u)V e(v)W e(w)τ e(τ)σe(σ)

with 0 ≤ e(u), e(v), e(w), e(τ) ≤ 1 and 0 ≤ e(σ) ≤ 2. In GL2F2[t]/(t
3 we have(

1 + at2 bt2

ct2 1 + dt2

)
U e(u)V e(v)W e(w)τ e(τ)σe(σ)

with 0 ≤ a, b, c, d ≤ 1.
Next let us examine conjugation by the base on the fibre. We have(

1 + at2 bt2

ct2 1 + dt2

) (
1 t
0 1

)
=

(
1 + at2 t + bt2

ct2 1 + dt2

)
while (

1 t
0 1

) (
1 + at2 bt2

ct2 1 + dt2

)
=

(
1 + at2 bt2 + t

ct2 1 + dt2

)
and (

1 + at2 bt2

ct2 1 + dt2

) (
1 0
t 1

)
=

(
1 + at2 bt2

ct2 + t 1 + dt2

)
while (

1 0
t 1

) (
1 + at2 bt2

ct2 1 + dt2

)
=

(
1 + at2 bt2

t + ct2 1 + dt2

)
so that U, V,W all centralise the fibre subgroup.

Can one find 3 matrices in the fibre which transform in the second manner
under conjugation. We would need

u =

(
a b
b a

)
14



fixed by σ-conjugation. Therefore

σuσ2 =

(
0 1
1 1

) (
a b
b a

) (
1 1
1 0

)

=

(
b a

a + b a + b

) (
1 1
1 0

)

=

(
a + b b

0 a + b

)
.

Therefore

u =

(
1 0
0 1

)
aka

(
1 + t2 0

0 1 + t2

)
.

Next we would like τ(v) = w = σ(v). If

v =

(
a b
c d

)
and w =

(
a′ b′

c′ d′

)
the τ -action implies

w =

(
d c
b a

)
.

In addition

σvσ2 =

(
0 1
1 1

) (
a b
c d

) (
1 1
1 0

)

=

(
c d

a + c b + d

) (
1 1
1 0

)

=

(
c + d c

a + b + c + d a + c

)
.

so that c = 0, a = d = 1. Hence

v =

(
1 b
0 1

)
and w =

(
1 0
b 1

)
.

Next we conjugate w by σ

σwσ2 =

(
0 1
1 1

) (
1 0
b 1

) (
1 1
1 0

)

=

(
b 1

1 + b 1

) (
1 1
1 0

)

=

(
1 + b b

b 1 + b

)
.
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so that if b = 1

σwσ2 = σ2vσ =

(
0 1
1 0

)
= v + w.

5. A third group

Consider the homomorphism

SLnZ/4[t]/(t2)
π−→ SLnZ/2[t]/(t2).

Let

X =

 a + bt c + dt

e + ft g + ht

 ∈ SL2Z/4[t]/(t2).

In order to lie in SLnZ/4[t]/(t2) we must have

det(X) = (a+bt)(g+ht)−(c+dt)(e+ft) = ag+bgt+aht−ce−det−cft ≡ 1

which means that

ag − ce ≡ 1, bg + ah ≡ de + cf (modulo 4).

Now consider ker(π) when n = 2. A matrix in this kernel has the form

X =

 1 + 2a + 2bt 2c + 2dt

2e + 2ft 1 + 2g + 2ht


in addition to satisfying the congruences

(1 + 2a)(1 + 2g) ≡ 1, 2b(1 + 2g) + (1 + 2a)2h ≡ 0 (modulo 4)

which is equivalent to

2a + 2g ≡ 0, 2b + 2h ≡ 0 (modulo 4).

Hence X ∈ ker(π)
⋂

SL2Z/4[t]/(t2) has the form

X =

 1 + 2a + 2bt 2c + 2dt

2e + 2ft 1 + 2a + 2bt

 .
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Next we observe that 1 + 2a + 2bt 2c + 2dt

2e + 2ft 1 + 2a + 2bt

 .

 1 + 2a′ + 2b′t 2c′ + 2d′t

2e′ + 2f ′t 1 + 2a′ + 2b′t



=

 (1 + 2a + 2bt)(1 + 2a′ + 2b′t) 2c + 2dt + 2c′ + 2d′t

2e + 2ft + 2e′ + 2f ′t (1 + 2a + 2bt)(1 + 2a′ + 2b′t)



=

 1 + 2a + 2bt + 2a′ + 2b′t 2c + 2dt + 2c′ + 2d′t

2e + 2ft + 2e′ + 2f ′t 1 + 2a + 2bt + 2a′ + 2b′t)


so that ker(π)

⋂
SL2Z/4[t]/(t2) is an abelian group isomorphic to

M0
2 F2 ×M0

2 F2.
Next we examine how M0

2 F2 ⊂ Σ3 ∝ M0
2 F2

∼= SL2Z/2[t]/(t2) acts on
ker(π)

⋂
SL2Z/4[t]/(t2). M0

2 F2 is generated by the three matrices U, V,W
given by

U =

(
1 0
0 1

)
, V =

(
0 1
0 0

)
. W =

(
0 0
1 0

)
.

Hence U corresponds to the matrix

U =

(
1 + t 0

0 1 + t

)
which lifts to

Û =

(
1 + 3t 0

0 1 + t

)
, Û−1 =

(
1 + t 0

0 1 + 3t

)
.

We have(
1 + 3t 0

0 1 + t

)  1 + 2a + 2bt 2c + 2dt

2e + 2ft 1 + 2a + 2bt

 (
1 + t 0

0 1 + 3t

)

=

 1 + 2a + 2bt + 3t + 2at 2c + 2dt + 2ct

2e + 2ft + 2et 1 + 2a + 2bt + t + 2at

 (
1 + t 0

0 1 + 3t

)

=

 1 + 2a + 2bt + 3t + 2at + t + 2at 2c + 2dt + 2ct + 2ct

2e + 2ft + 2et + 2et 1 + 2a + 2bt + t + 2at + 3t + 2at



=

 1 + 2a + 2bt 2c + 2dt

2e + 2ft 1 + 2a + 2bt


17



so that U acts trivially.
Similarly V corresponds to the matrix

V =

(
1 t
0 1

)

which lifts to

V̂ =

(
1 t
0 1

)
, V̂ −1 =

(
1 3t
0 1

)
.

We have

(
1 t
0 1

)  1 + 2a + 2bt 2c + 2dt

2e + 2ft 1 + 2a + 2bt

 (
1 3t
0 1

)

=

 1 + 2a + 2bt + 2et 2c + 2dt + t + 2at

2e + 2ft 1 + 2a + 2bt

 (
1 3t
0 1

)

=

 1 + 2a + 2bt + 2et 2c + 2dt + t + 2at + 3t + 2at

2e + 2ft 1 + 2a + 2bt + 2et



=

 1 + 2a + 2bt + 2et 2c + 2dt

2e + 2ft 1 + 2a + 2bt + 2et

 .

Therefore V acts trivially on the fibre group if 2e ≡ 0 (modulo 4).
Similarly W corresponds to the matrix

W =

(
1 0
t 1

)

which lifts to

Ŵ =

(
1 0
t 1

)
, Ŵ−1 =

(
1 0
3t 1

)
.
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We have(
1 0
t 1

)  1 + 2a + 2bt 2c + 2dt

2e + 2ft 1 + 2a + 2bt

 (
1 0
3t 1

)

=

 1 + 2a + 2bt 2c + 2dt

2e + 2ft + t + 2at 1 + 2a + 2bt + 2ct

 (
1 0
3t 1

)

=

 1 + 2a + 2bt + 2ct 2c + 2dt

2e + 2ft + t + 2at + 3t + 2at 1 + 2a + 2bt + 2ct



=

 1 + 2a + 2bt + 2ct 2c + 2dt

2e + 2ft 1 + 2a + 2bt + 2ct

 .

Therefore W acts trivially on the fibre group if 2c ≡ 0 (modulo 4).
Now consider the 2-cycles made from the matrices in SL2F2[t]/(t

2)

z =

 1 + t 0

0 1 + t

 , and x =

 1 t

t 1


We lift x to

X =

 1 + 2a + 2bt 2c + (1 + 2d)t

2e + (1 + 2f)t 1 + 2a + 2ht

 ∈ SL2Z/4[t]/(t2)

The conditions that X ∈ SL2Z/4[t]/(t2) are

(1 + 2a)(1 + 2a)− 2c · 2e ≡ 1,

2b(1 + 2a) + (1 + 2a)2h ≡ (1 + 2d)2e + 2c(1 + 2f) (modulo 4)

of which the first condition is satisfied automatically by X and the second is
equivalent to

2b + 2h ≡ 2e + 2c (modulo 4)

so we may write

X =

 1 + 2a + 2bt 2c + (1 + 2d)t

2e + (1 + 2f)t 1 + 2a + (2c + 2b + 2e)t

 ∈ SL2Z/4[t]/(t2)
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Next we must compute

X ·X

=

 1 + 2a + 2bt 2c + (1 + 2d)t

2e + (1 + 2f)t 1 + 2a + (2c + 2b + 2e)t

 ·

 1 + 2a + 2bt 2c + (1 + 2d)t

2e + (1 + 2f)t 1 + 2a + (2c + 2b + 2e)t



=

 1 + 2ct + 2et 2 + (2c + 2e)t

2 + (2c + 2e)t 1 + 2et + 2ct



We lift

z =

 1 + t 0

0 1 + t


to

Z =

 1 + 2a + (1 + 2b)t 2c + 2dt

2e + 2ft 1 + 2a + (3 + 2b)t

 ∈ SL2Z/4[t]/(t2)

whose determinant is equal to

(1 + 2a)(1 + 2a + 3t + 2bt) + (1 + 2b)t(1 + 2a + 3t + 2bt)

= 1 + 2a + 3t + 2bt + 2a + 2at + t + 2at + 2bt

= 1 + 4t

so that Z ∈ SL2Z/4[t]/(t2).
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Next we compute

Z · Z

=

 1 + 2a + (1 + 2b)t 2c + 2dt

2e + 2ft 1 + 2a + (3 + 2b)t


 1 + 2a + (1 + 2b)t 2c + 2dt

2e + 2ft 1 + 2a + (3 + 2b)t



=

 1 + 2t 0

0 1 + 2t


Therefore choosing e = c = 0 in the lift X we find that pairing with the

difference of our two 2-cycles yields

I2 ⊗

 1 2t

2t 1

− I2 ⊗

 1 + 2t 0

0 1 + 2t

 ∈ (M0
2 ⊗M0

2 )SL2F2[t]/(t2)

which is non-zero!

References

[1] P.J. Hilton and U. Stammbach: A course in homological algebra; Springer Verlag
Grad. Texts in Math. 4 (1971).

[2] J. Aisbett and V.P. Snaith: K3 of truncated polynomial rings over fields of char-
acteristic two; Math. Proc. Camb. Phil. Soc. 101 (1987(=) 509-521.

[3] V.P. Snaith: Topological Methods in Galois Representation Theory, C.M.Soc Mono-
graphs, Wiley (1989) (republished by Dover in 2013).

21


