HOMOLOGICAL DETECTION

VICTOR P. SNAITH

Contents

1. The 2-cocycle

Let $\mathbb{F} = \mathbb{F}_{2^d}$ and consider the group extension

$$M_n^0 \longrightarrow SL_n \mathbb{F}[t]/(t^3) \xrightarrow{\pi} SL_n \mathbb{F}[t]/(t^2)$$

where M_n^0 is the subgroup of $\operatorname{Ker}(\pi)$ given by

$$M_n^0 = \{1 + Xt^2 \mid \det(1 + Xt^2) = 1\}.$$

Since

$$\det\left(\begin{pmatrix} 1+X_{11}t^2 & X_{12}t^2 & \dots & X_{1n}t^2\\ X_{21}t^2 & 1+X_{22}t^2 & \dots & X_{2n}t^2\\ \vdots & \vdots & \vdots & \vdots & \vdots\\ X_{n1}t^2 & X_{n2}t^2 & \dots & 1+X_{nn}t^2 \end{pmatrix}\right)$$

 $\equiv 1 + \operatorname{Trace}(X)t^2 \pmod{t^3}$

so that M_n^0 is isomorphic to the additive abelian group given by the trace zero $n \times n$ matrices with entries in in \mathbb{F} .

Choose a map of sets, which is a right inverse to π ,

$$h: SL_n \mathbb{F}[t]/(t^2) \longrightarrow SL_n \mathbb{F}[t]/(t^3).$$

If $X \in SL_n \mathbb{F}[t]/(t^2)$ we may write X as $X = X_0 + X_1 t$ where $X_0 \in SL_n \mathbb{F}$ and X_1 is a trace zero $n \times n$ matrix with entries in in \mathbb{F} . The formula for the determinant shows that there is an $n \times n$ matrix X_2 with entries in \mathbb{F} such that $h(X) = X_0 + X_1 t + X_2 t^2 \in SL_n \mathbb{F}[t]/(t^3)$.

Example 1.1. Consider the 2×2 matrix

$$x = \begin{pmatrix} 1 & t \\ t & 1 \end{pmatrix} \in SL_2 \mathbb{F}[t]/(t^2).$$

We have $x^2 = 1 \in SL_2\mathbb{F}[t]/(t^2)$. In $GL_2\mathbb{F}[t]/(t^3)$ we have

$$y = \left(\begin{array}{cc} 1+t^2 & t\\ t & 1 \end{array}\right)$$

Date: 20 October 2016.

which satisfies $\pi(y) = x$ and

$$\det(y) = 1 + t^2 + t^2 \equiv 1$$

so that we may choose h(x) = y. However

$$h(x)^{2} = y^{2} = \begin{pmatrix} 1+t^{2} & t \\ t & 1 \end{pmatrix} \begin{pmatrix} 1+t^{2} & t \\ t & 1 \end{pmatrix} = \begin{pmatrix} 1+t^{2} & 0 \\ 0 & 1+t^{2} \end{pmatrix} \neq 1.$$

Therefore the restricted group extension

$$M_n^0 \longrightarrow \pi^{-1}(\langle x \rangle) \xrightarrow{\pi} \langle x \rangle$$

is not split.

Next we are going to write down explicitly the 2-cycle

$$\Delta: SL_n \mathbb{F}[t]/(t^2) \times SL_n \mathbb{F}[t]/(t^2) \longrightarrow M_n^0,$$

in the convention of the inhomogeneous bar resolution ([?] p. 41). In terms of a section h of π the formula is

$$\Delta([X_1|X_2]) = h(X_1)h(X_2)h(X_1X_2)^{-1} \in M_n^0.$$

We need to show that Δ is a 2-cycle, which is the condition

$$\Delta(\delta(X_0|X_1|X_2]) = 1.$$

Explicitly

$$X_0(\Delta([X_1|X_2]))(\Delta([X_0X_1|X_2]))^{-1}\Delta([X_0|X_1X_2])(\Delta([X_0|X_1]))^{-1} = 1.$$

In the first of these four terms the action of X_0 on $\Delta([X_1|X_2])$ is by reduction $X_0 \mapsto \overline{X}_0 \in SL_n \mathbb{F}$ following by conjugation. Write

$$A = X_0(\Delta([X_1|X_2])) = \overline{X}_0(h(X_1)h(X_2)h(X_1X_2)^{-1})\overline{X}_0^{-1},$$

$$B^{-1} = \Delta([X_0X_1|X_2]) = h(X_0X_1)h(X_2)h(X_0X_1X_2)^{-1},$$

$$B = h(X_0X_1X_2)h(X_2)^{-1}h(X_0X_1)^{-1},$$

$$C = \Delta([X_0|X_1X_2]) = h(X_0)h(X_1X_2)h(X_0X_1X_2)^{-1},$$

$$D^{-1} = \Delta([X_0|X_1]) = h(X_0)h(X_1)h(X_0X_1)^{-1},$$

$$D = h(X_0X_1)h(X_1)^{-1}h(X_0)^{-1}.$$

Now we have

$$\Delta(\delta(X_0|X_1|X_2]) = ABCD = ACBD.$$

Therefore

$$\begin{split} &\Delta(\delta(X_0|X_1|X_2)) \\ &= \overline{X}_0(h(X_1)h(X_2)h(X_1X_2)^{-1})\overline{X}_0^{-1} \times \\ &\quad h(X_0)h(X_1X_2)h(X_0X_1X_2)^{-1} \times h(X_0X_1X_2)h(X_2)^{-1}h(X_0X_1)^{-1} \\ &\quad \times h(X_0X_1)h(X_1)^{-1}h(X_0)^{-1} \\ &= \overline{X}_0(h(X_1)h(X_2)h(X_1X_2)^{-1})\overline{X}_0^{-1} \times \\ &\quad h(X_0)h(X_1X_2) \times h(X_2)^{-1}h(X_1)^{-1}h(X_0)^{-1} \\ &= \overline{X}_0(h(X_1)h(X_2)h(X_1X_2)^{-1})\overline{X}_0^{-1} \times \\ &\quad \overline{X}_0h(X_1X_2) \times h(X_2)^{-1}h(X_1)^{-1}\overline{X}_0^{-1} \end{split}$$

because $h(X_1X_2) \times h(X_2)^{-1}h(X_1)^{-1} \in M_n^0$ and $h(X_0)$ conjugates M_n^0 by first reducing to \overline{X}_0 . Therefore

$$\begin{split} &\Delta(\delta(X_0|X_1|X_2]) \\ &= \overline{X}_0 h(X_1) h(X_2) h(X_1X_2)^{-1} h(X_1X_2) \times h(X_2)^{-1} h(X_1)^{-1} \overline{X}_0^{-1} \\ &= 1, \end{split}$$

as required.

This shows that there is a cohomology class

$$[\Delta] \in H^2(SL_n \mathbb{F}[t]/(t^2); M_n^0)$$

which must be non-zero since the restriction to $H^2(\langle x \rangle; M_n^0)$ represents the non-split extension of Example ??.

Now consider the composition

$$H_2(SL_n\mathbb{F}[t]/(t^2); M_n^0) \otimes H^2(SL_n\mathbb{F}[t]/(t^2); M_n^0)$$

\downarrow evaluation

$$H_0(SL_n\mathbb{F}[t]/(t^2); M_n^0 \otimes M_n^0)$$
$$\downarrow \cong$$
$$(M_n^0 \otimes M_n^0)_{SL_n\mathbb{F}[t]/(t^2)}$$
$$\downarrow T$$
$$\mathbb{F}$$

where $T(A \otimes B) = \text{Trace}(AB)$.

Next we shall attempt to calculate the image under this map, but without the final map T.

Theorem 1.2. (Charlap and Vasquez)

The above composite map, but without the final map T, is the differential

$$d_2: E_{2,1}^2 = H_2(SL_2\mathbb{F}[t]/(t^2); M_2^0) \cong \mathbb{F} \oplus \mathbb{F} \longrightarrow E_{0,2}^2 = (M_n^0 \otimes M_n^0)_{SL_n\mathbb{F}[t]/(t^2)}$$

Firstly let us make the pairing explicit on the chain level. If (\underline{B}_*G, d) is the inhomogeneous bar resolution with left free *G*-action then $H^2(SL_n\mathbb{F}[t]/(t^2); M_n^0)$ is the 2-dimensional homology of the cochain complex

 $\operatorname{Hom}_{SL_n\mathbb{F}[t]/(t^2)}(\underline{B}_*SL_n\mathbb{F}[t]/(t^2), M_n^0)$

with differential $d^* = (-\cdot d)$ and $SL_n\mathbb{F}[t]/(t^2)$ acting on the left of M_n^0 by reduction to $SL_n\mathbb{F}$) following by conjugation $X(A) = \overline{X}A\overline{X}^{-1}$. The homology $H_2(SL_n\mathbb{F}[t]/(t^2); M_n^0)$ is the 2-dimensional homology of the chain complex

 $M_n^0 \otimes_{SL_n \mathbb{F}[t]/(t^2)} \underline{B}_* SL_n \mathbb{F}[t]/(t^2)$

with differential $1 \otimes d$. This time $SL_n \mathbb{F}[t]/(t^2)$ acts on the right of M_n^0 by reduction to $SL_n \mathbb{F}$) following by conjugation $(A)X = \overline{X}^{-1}A\overline{X}$.

With these actions we have

 $A \otimes_{SL_n \mathbb{F}[t]/(t^2)} X(b) = \overline{X}^{-1} A \overline{X} \otimes_{SL_n \mathbb{F}[t]/(t^2)} b \in M_n^0 \otimes_{SL_n \mathbb{F}[t]/(t^2)} \underline{B}_* SL_n \mathbb{F}[t]/(t^2)$ so that if

$$f \in \operatorname{Hom}_{SL_n\mathbb{F}[t]/(t^2)}(\underline{B}_*SL_n\mathbb{F}[t]/(t^2), M_n^0)$$

then

$$A \otimes \overline{X}f(b)\overline{X}^{-1} = \overline{X}^{-1}A\overline{X} \otimes f(b) \in (M_n^0 \otimes M_n^0)_{SL_n\mathbb{F}[t]/(t^2)}$$

so that $1 \otimes f$ gives a well-defined map which lands in the $SL_n\mathbb{F}[t]/(t^2)$ coinvariant quotient of $M_n^0 \otimes M_n^0$ where the action is the diagonal action

on the left of each M_n^0 -factor. These invariants are mapped in a well-defined manner to \mathbb{F} by the trace of the product.

Consider matrices of the form, $\lambda, \mu \in \mathbb{F}^*$

$$x_{\lambda,\mu} = \begin{pmatrix} 1 & \lambda t \\ \mu t & 1 \end{pmatrix} \in SL_2 \mathbb{F}[t]/(t^2)$$

We have

$$\begin{pmatrix} 1 & \lambda t \\ \mu t & 1 \end{pmatrix} \begin{pmatrix} 1 & \lambda t \\ \mu t & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
with $\pi_{\lambda t}$. In fact

and $x_{\lambda,\mu}$ commutes with $x_{\lambda',\mu'}$. In fact

$$\begin{pmatrix} 1 & \lambda t \\ \mu t & 1 \end{pmatrix} \begin{pmatrix} 1 & \lambda' t \\ \mu' t & 1 \end{pmatrix} = \begin{pmatrix} 1 & (\lambda + \lambda')t \\ (\mu + \mu')t & 1 \end{pmatrix}.$$

Also a lift of $x_{\lambda,\mu}$ to $SL_2\mathbb{F}[t]/(t^3)$ is given by

$$\left(\begin{array}{cc} 1+\lambda\mu t^2 & \lambda t\\ \mu t & 1 \end{array}\right).$$

The square of this lift is given by

$$\left(\begin{array}{cc} 1+\lambda\mu t^2 & \lambda t\\ \mu t & 1 \end{array}\right) \left(\begin{array}{cc} 1+\lambda\mu t^2 & \lambda t\\ \mu t & 1 \end{array}\right) = \left(\begin{array}{cc} 1+\lambda\mu t^2 & 0\\ 0 & 1+\lambda\mu t^2 \end{array}\right).$$

Therefore for each X, λ, μ we have a cycle

$$X \otimes_{SL_n \mathbb{F}[t]/(t^2)} \left([x_{\lambda,\mu} | x_{\lambda,\mu}] - [1|1] \right) \in M_n^0 \otimes_{SL_n \mathbb{F}[t]/(t^2)} \underline{B}_2 SL_n \mathbb{F}[t]/(t^2)$$

since $x_{\lambda,\mu}$ maps to the identity in $SL_2\mathbb{F}$.

The image of

$$[X \otimes_{SL_n \mathbb{F}[t]/(t^2)} ([x_{\lambda,\mu} | x_{\lambda,\mu}] - [1|1])] \otimes [\Delta]$$

in

$$(M_n^0 \otimes M_n^0)_{SL_n \mathbb{F}[t]/(t^2)}$$

is the class of

$$d_2(X \otimes_{SL_n \mathbb{F}[t]/(t^2)} [x_{\lambda,\mu} | x_{\lambda,\mu}]) = X \otimes \begin{pmatrix} \lambda \mu t^2 & 0 \\ 0 & \lambda \mu t^2 \end{pmatrix}.$$

Choosing X to equal the 2×2 identity matrix gives a map to a copy of \mathbb{F} in $(M_n^0 \otimes \widetilde{M}_n^0)_{SL_n \mathbb{F}[t]/(t^2)}$. Next consider the matrix

$$z_{\lambda} = \begin{pmatrix} 1 + \lambda \mu t & 0 \\ 0 & 1 + \lambda t \end{pmatrix} \in SL_2 \mathbb{F}[t]/(t^2).$$

We have

$$z_{\lambda}^{2} = \left(\begin{array}{cc} 1 + \lambda^{2}t^{2} & 0\\ 0 & 1 + \lambda^{2}t^{2} \end{array}\right) = 1.$$

We may choose

$$h(z_{\lambda}) = \left(\begin{array}{cc} 1 + \lambda t + \lambda^2 t^2 & 0\\ 0 & 1 + \lambda t \end{array}\right)$$

since det $(h(z_{\lambda}) \equiv 1 + \lambda^2 t^2 + \lambda^2 t^2 \equiv 1 \pmod{t^3}$ so that $h(z_{\lambda}) \in SL_2\mathbb{F}[t]/(t^3)$. In addition

$$h(z_{\lambda}) = \begin{pmatrix} 1 + \lambda t + \lambda^2 t^2 & 0\\ 0 & 1 + \lambda t \end{pmatrix} \begin{pmatrix} 1 + \lambda t + \lambda^2 t^2 & 0\\ 0 & 1 + \lambda t \end{pmatrix} = (1 + \lambda^2 t^2)I_2.$$

Therefore $X \otimes_{SL_2\mathbb{F}[t]/(t^2)} (|z_{\lambda}|z_{\lambda}| - |1|1|)$ is a 2-cycle and

$$d_2(X \otimes_{SL_2\mathbb{F}[t]/(t^2)} ([z_{\lambda}|z_{\lambda}] - [1|1])) = X \otimes \begin{pmatrix} \lambda^2 t^2 & 0\\ 0 & \lambda^2 t^2 \end{pmatrix}.$$

Therefore

$$d_2(X \otimes_{SL_2\mathbb{F}[t]/(t^2)} ([z_{\lambda}|z_{\lambda}] - [x_{\lambda,\lambda}|x_{\lambda,\lambda}]) = 0.$$

Question 1.3. Is

$$X \otimes_{SL_2\mathbb{F}[t]/(t^2)} ([z_{\lambda}|z_{\lambda}] - [x_{\lambda,\lambda}|x_{\lambda,\lambda}])$$

non-zero in $E_{2,1}^2$? In ([?] p.519 Prop 5.19) it is shown that $E_{2,1}^2 \cong \mathbb{F} \oplus \mathbb{F}$ by an elaborate series of calculations. Perhaps the details of these would answer this question?

This question will be resolved in Section Three.

Example 1.4. Consider $SL_2\mathbb{F}_2 = GL_2\mathbb{F}_2 \cong \Sigma_3$ generated by

$$\tau = \left(\begin{array}{cc} 0 & 1\\ 1 & 0 \end{array}\right), \ \sigma = \left(\begin{array}{cc} 0 & 1\\ 1 & 1 \end{array}\right)$$

satisfying $\tau^2 = 1 = \sigma^3, \tau \sigma \tau = \sigma^2$. $SL_2\mathbb{F}_2[t]/(t^2) = \Sigma_3 \propto M_2^0$ where

$$U = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \ V = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}. \ W = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$$

and $\tau(U) = U = \sigma(U), \tau(V) = W, \sigma(V) = W, \sigma(W) = U + V + W.$

However there is another Σ_3 -action on M_2^0 given by $\tau(U) = U = \sigma(U), \tau(V) =$ $W, \sigma(V) = W, \sigma(W) = V + W.$ If $\alpha : M_2^0 \longrightarrow M_2^0$ transport the first action to the second, assume that the

matrix of α with respect to the ordered basis is

$$\alpha = \left(\begin{array}{ccc} a & a' & a'' \\ b & b' & b'' \\ c & c' & c'' \end{array}\right).$$

Therefore $\alpha(\tau(U)) = \tau(\alpha(U))$ implies that

$$aU + bV + cW = aU + cV + bW$$

so that b = c. Also $\alpha(\sigma(U)) = \sigma(\alpha(U))$ implies that

$$aU + bV + bW = aU + bW + b(V + W) = aU + bV$$

so that b = 0 and a = 1. Next consider $\alpha(\tau(V)) = \tau(\alpha(V))$ which implies

$$a''U + b''V + c''W = \tau(a'U + b'V + c'W) = a'U + b'W + c'V$$

so that a' = a'', b'' = c' and c'' = b'. The relation $\alpha(\sigma(V)) = \sigma(\alpha(V))$ which implies

 $a'U + c'V + b'W = \sigma(a'U + b'V + c'W) = a'U + b'W + c'(V + W)$ so that c' = 0. The relation $\alpha(\sigma(W)) = \sigma(\alpha(W))$ implies

$$U + a'U + b'V + a'U + b'W = \sigma(a'U + b'W) = a'U + b'(V + W)$$

so that

$$\alpha = \left(\begin{array}{rrr} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right).$$

This matrix satisfies $\alpha^2 = 1$.

2. The construction of the spectral sequence

The homology spectral sequence used in [?]

$$E_{r,s}^2 = H_r(SL_n\mathbb{F}[t]/(t^2); H_s(M_n^0)) \Longrightarrow H_{r+s}(SL_n\mathbb{F}[t]/(t^3); \mathbb{Z}),$$

whose differentials have the form

$$d_t: E_{r,s}^t \longrightarrow E_{r-t,s+t-1}^t$$

is an example of the first Grothendieck spectral sequence ([?] p.297) of a bicomplex $(A_{*,*}, d_I + d_{II})$.

Let us partially recall its construction. We have two group extensions

$$G_n^3 \longrightarrow SL_n \mathbb{F}[t]/(t^3) \longrightarrow SL_n \mathbb{F}$$

and

$$G_n^2 \longrightarrow SL_n \mathbb{F}[t]/(t^2) \longrightarrow SL_n \mathbb{F}.$$

Recall that the inhomogeneous bar resolution of G has a differential

$$\partial([x_1|\dots|x_m]) = x_1[x_2|\dots|x_m] + \sum_{i=1}^{m-1} (-1)^i [x_1|\dots|x_ix_{i+1}|\dots|x_m] + (-1)^m [x_1|\dots|x_{m-1}].$$

 Set

$$A_{r,s} = \bigoplus_{a=0}^{r} C_{r-a,a,s}$$

and

$$C_{i,j,k} = \mathbb{Z} \otimes_{SL_n \mathbb{F}[t]/(t^3)} \underline{B}_k G_n^3 \otimes (\underline{B}_j G_n^2 \otimes \underline{B}_i SL_n \mathbb{F}).$$

Here $g \in SL_n \mathbb{F}$ acts by conjugation $g(y[y_1| \dots y_u]) = g(y)[g(y_1)| \dots g(y_u)]$ on $\underline{B}_*G_n^3$ and $\underline{B}_*G_n^2$. G_n^3 acts as usual on its inhomogeneous bar resolution and on that of G_n^2 via reduction and then the usual G_n^2 -action on $\underline{B}_*G_n^2$. Putting these actions together - diagonally - gives an $SL_n \mathbb{F}[t]/(t^2)$ -action making

$$\underline{B}_j G_n^2 \otimes \underline{B}_i SL_n \mathbb{F}_7$$

into a free resolution of the semi-direct product $SL_n\mathbb{F}[t]/(t^2)$. Therefore $A_{*,*}$ is a free resolution of $SL_n\mathbb{F}[t]/(t^3)$ with the differential $d_I + d_{II}$ given by

$$d_I(x) = (-1)^k 1 \otimes \partial \otimes 1 + (-1)^{k+j} 1 \otimes 1 \otimes \partial)(x), \quad x \in C_{i,j,k}$$

and

$$d_{II}(x) = (\partial \otimes 1 \otimes 1)(x), \quad x \in C_{i,j,k}.$$

Note that

(

$$d_I: A_{r,s} \longrightarrow A_{r-1,s} \text{ and } d_{II}: A_{r,s} \longrightarrow A_{r,s-1}$$

The filtration which gives rise to the first spectral sequence is

$$F^{p}(\oplus_{r+s=m} A_{r,s}) = \oplus_{r+s=m,s \le p} A_{r,s}$$

so that $F^{p-1} \subseteq F^p$ and $d_{II}(F^p) \subseteq F^{p-1}$. In addition

$$F^{p}(\bigoplus_{r+s=m} A_{r,s})/F^{p-1}(\bigoplus_{r+s=m} A_{r,s}) \cong A_{m-p,p}$$

and $E_{m-p,p}^1$ is the homology at $A_{m-p,p}$ of the complex

 $\dots \xrightarrow{d_{II}} A_{m-p,p} \xrightarrow{d_{II}} A_{m-p,p-1} \xrightarrow{d_{II}} \dots$

The differential d_I induces a chain complex

$$\dots \xrightarrow{d_I} E^1_{m-p,p} \xrightarrow{d_I} E^1_{m-p-1,p} \xrightarrow{d_I} \dots$$

whose homology at $E^1_{m-p,p}$ is $E^2_{m-p,p} = H_I H_{II}$. We have

$$A_{m-p,p} = \bigoplus_{a=0}^{m-p} \mathbb{Z} \otimes_{SL_n \mathbb{F}[t]/(t^3)} \underline{B}_p G_n^3 \otimes \underline{B}_a G_n^2 \otimes \underline{B}_{m-p-a} SL_n \mathbb{F}$$
$$\downarrow \ d_{II} = \partial \otimes 1 \otimes 1$$

 $A_{m-p,p-1} = \bigoplus_{a=0}^{m-p} \mathbb{Z} \otimes_{SL_n \mathbb{F}[t]/(t^3)} \underline{B}_{p-1} G_n^3 \otimes \underline{B}_a G_n^2 \otimes \underline{B}_{m-p-a} SL_n \mathbb{F}$

so that

$$E_{m-p,p}^{1} = H_{p}(G_{n}^{3}) \otimes_{SL_{n}\mathbb{F}[t]/(t^{2})} \tilde{B}_{m-p}\mathbb{Z} \otimes_{SL_{n}\mathbb{F}[t]/(t^{2})}$$

where $\tilde{B}_*\mathbb{Z}\otimes_{SL_n\mathbb{F}[t]/(t^2)}$ is a free $SL_n\mathbb{F}[t]/(t^2)$ -resolution of \mathbb{Z} so that

$$(H_I H_{II})_{r,s} = E_{r,s}^2 \cong H_r(SL_n \mathbb{F}[t]/(t^2); H_s(M_n^0)),$$

as required.

The successive differentials on the successive $E_{*,*}^t$'s eventually gives a "terminal" answer $E_{*,*}^{\infty}$ which is isomorphic to the associated graded of the filtration on $H_{r+s}(SL_n\mathbb{F}[t]/(t^3);\mathbb{Z})$ corresponding to the images of the homology the $[F^pA_{*,*})$'s.

It is show in [?] that, in the spectral sequence we are considering,

$$F^0 = 0, F^1/F^0 \cong \mathbb{F} \oplus \mathbb{F}, F^2/F^1 \cong \mathbb{F}, F^3/F^2 \otimes \mathbb{Z}_2 = 0.$$

3. Addressing Question ??

In this section I shall compute the injective transfer map

$$i^*: H_2(SL_2\mathbb{F}_2[t]/(t^2); M_2^0\mathbb{F}_2) \longrightarrow H_2(\langle \tau \rangle \propto M_2^0\mathbb{F}_2; M_2^0\mathbb{F}_2).$$

This map is injective because

$$SL_2\mathbb{F}_2 = GL_2\mathbb{F}_2 \cong \Sigma_3 = \{\tau, \sigma \mid \tau^2 = 1 = \sigma^3, \tau\sigma\tau = \sigma^2\}$$

and

$$SL_2\mathbb{F}_2[t]/(t^2) \cong \Sigma_3 \propto M_2^0\mathbb{F}_2.$$

If z generates a cyclic group of order n write $P_*(g) \xrightarrow{\epsilon} \mathbb{Z}$ for the free resolution of the trivial module \mathbb{Z} of the form

$$\dots \longrightarrow \mathbb{Z}[\langle g \rangle] e_2(g) \longrightarrow \mathbb{Z}[\langle g \rangle] e_1(g) \longrightarrow \mathbb{Z}[\langle g \rangle] e_0(g) \longrightarrow \mathbb{Z}$$

where $d(e_{2m}(g)) = (1+g+\ldots+g^{n-1})e_{2m-1}(g), d(e_{2m-1}(g)) = (1-g)e_{2m-2}(g)$ and $\epsilon(e_0(g)) = 1$. Since $M_2^0 = \langle U \rangle \oplus \langle V \rangle \oplus \langle W \rangle$ a free $\mathbb{Z}[M_2^0]$ -resolution is given by

 $P_*(U) \otimes P_*(V) \otimes P_*(W)$

with differential on $P_a(U) \otimes P_b(V) \otimes P_c(W)$

$$d = d \otimes 1 \otimes 1 + (-1)^a d \otimes 1 \otimes 1 + (-1)^{a+b} d \otimes 1 \otimes 1.$$

Now to construct a free $\Sigma_3 = \langle \tau \rangle \propto \langle \sigma \rangle$ -resolution. First we must decide how to let τ act on the left of $P_*(\sigma)$. The action on the inhomogeneous bar resolution of $\langle \sigma \rangle$ would be

$$\tau(g[g_1|g_2|\ldots|g_t]) = \tau(g)[\tau(g_1)|\tau(g_2)|\ldots|\tau(g_t)$$

and the map ([?] p.17)

$$\phi: P_*(\sigma) \longrightarrow \underline{B}_*\langle \sigma \rangle$$

is given by

$$\phi(e_i(\sigma)) = \begin{cases} \sum_I \left[\sigma^{i_1} |\sigma| \sigma^{i_2} |\sigma| \dots |\sigma^{i_s}|\sigma\right] & \text{if } i = 2s \\ \sum_I \left[\sigma| \sigma^{i_1} |\sigma| \sigma^{i_2} |\sigma| \dots |\sigma^{i_s}|\sigma\right] & \text{if } i = 2s + 1 \end{cases}$$

It seems difficult to define the involution τ directly on the small resolution so form the tensor product

$$C_s = \bigoplus_{a+b=s} \underline{B}_a \langle \sigma \rangle \otimes P_b(\tau)$$

with differential $d = d \otimes 1 + (-1)^a 1 \otimes d$ and Σ_3 -action given by $\sigma(x \otimes y) = \sigma \cdot x \otimes y$ and $\tau(x \otimes y) = \tau(x) \otimes \tau \cdot y$. This is a chain complex of free Σ_3 modules because

$$\sigma(d(x \otimes y)) = \sigma \cdot d(x) \otimes y + (-1)^a \sigma \cdot x \otimes d(y)$$
$$= d(\sigma \cdot x) \otimes y + (-1)^a \sigma \cdot x \otimes d(y)$$

and

$$\tau(d(x \otimes y)) = \tau(d(x)) \otimes \tau \cdot y + (-1)^a \tau(x) \otimes \tau \cdot d(y)$$
$$= d(\tau(x)) \otimes \tau \cdot y + (-1)^a \tau(x) \otimes \tau \cdot d(y).$$

Furthermore

$$\tau(\sigma(x \otimes y)) = \tau(\sigma \cdot x \otimes y) = \tau(\sigma \cdot x) \otimes \tau \cdot y = \tau(\sigma) \cdot \tau(x) \otimes \tau \cdot y$$

while

$$\sigma^{2}(\tau(x \otimes y)) = \sigma^{2}(\tau(x) \otimes \tau \cdot y) = \sigma^{2} \cdot \tau(x) \otimes \tau \cdot y) = \tau(\sigma) \cdot \tau(x) \otimes \tau \cdot y$$

which shows that the actions provide a Σ_3 -module structure.

Next we need a Σ_3 -action on the resolution for $M_2^0 \mathbb{F}_2$. This does not seem to work on the resolution $P_*(U) \otimes P_*(V) \otimes P_*(W)$. Recall that the action on U, V, W in the semi-direct product is given by

$$\tau(U) = U = \sigma(U), \tau(V) = W, \sigma(V) = W, \sigma(W) = U + V + W.$$

This suggests the action

$$\tau(e_s(U)) = e_s(U) = \sigma(e_s(U)), \ \tau(e_s(V)) = e_s(W), \ \tau(e_s(W)) = e_s(V)$$

and

$$\sigma(e_s(V)) = e_s(W), \ \sigma(e_s(W)) = e_s(U) + e_s(V) + e_s(W).$$

This is indeed a $\mathbb{F}_2[\Sigma_3]$ -action because

$$\sigma^{3}(e_{s}(V)) = \sigma^{2}(e_{s}(W)) = \sigma(e_{s}(U) + e_{s}(V) + e_{s}(W))$$
$$= e_{s}(U) + e_{s}(W)) + \sigma(e_{s}(U) + e_{s}(V) + e_{s}(W))$$

 $\equiv e_s(V) \pmod{2}$

which will almost suffice for our purposes since we are eventually going to work in cohomology with coefficients in M_2^0 .

However, the problem is that $P_*(U) \otimes P_*(V) \otimes P_*(W)$ is not preserved by this action, which spreads out onto something more like the symmetric algebra.

Therefore we had better use the inhomogeneous bar resolution $\underline{B}M_2^0$. Since $g \in \Sigma_3$ acts on the group M_2^0 as described above it acts on the bar resolution by

$$g(z_0[z_1|\ldots z_m]) = g(z_0)[g(z_1)|\ldots g(z_m)].$$

Form the $\mathbb{Z}[SL_2\mathbb{F}_2[t]/(t^2)]$ -resolution of \mathbb{Z} of the form

$$\underline{B}M_2^0 \otimes C_*$$

with $g \in \Sigma_3$ acting via

$$g(a \otimes c) = g(a) \otimes g \cdot c$$

and $m \in M_2^0$ acting via

$$m(a \otimes c) = m \cdot a \otimes c.$$

We have to verify that both sides of

$$(g,1)(1,g^{-1}(m)) = (g,m) = (1,m)(g,1) = (g,m) \in \Sigma_3 \propto M_2^0$$

which follows since

$$(g,1)(1,g^{-1}(m))(a \otimes c) = (g,1)(g^{-1}(m) \cdot a \otimes c) = m \cdot g(a) \otimes g \cdot c$$

while

$$(1,m)(g,1)(a\otimes c) = (1,m)(g(a)\otimes g\cdot c) = m\cdot g(a)\otimes g\cdot c.$$

Now the first of the two 2-cycle representatives which we wish to map is, in terms of the inhomogeneous bar resolution,

$$I_2 \otimes \left([(1+t)I_2|(1+t)I_2] - [1|1] \right) \in M_2^0 \otimes_{SL_2\mathbb{F}_2[t]/(t^2)} \underline{B}_* SL_2\mathbb{F}_2[t]/(t^2).$$

We know that this represents a non-zero homology class, because d_2 is non-zero on it, and we can see that it originates in

$$M_2^0 \otimes_{\langle U \rangle} \underline{B}_* \langle U \rangle$$

so that in terms of the other resolution it is represented by

$$I_2 \otimes ([(1+t)I_2|(1+t)I_2] - [1|1]) \otimes 1 \in M_2^0 \otimes_{SL_2\mathbb{F}_2[t]/(t^2)} \underline{B}M_2^0 \otimes C_*$$

where $1 \in C_0$ on the right and the other 1 is the neutral element of the group. The transfer is induced by the chain map from

$$M_2^0 \otimes_{SL_2\mathbb{F}_2[t]/(t^2)} \underline{B} M_2^0 \otimes C_*$$

 to

$$M_2^0 \otimes_{\langle \tau \rangle \propto M_2^0} \underline{B} M_2^0 \otimes C_*$$

which sends $X \otimes_{SL_2\mathbb{F}_2[t]/(t^2)} a \otimes c$ to

$$\sum_{g=1,\sigma,\sigma^2} (X)g^{-1} \otimes_{\langle \tau \rangle \propto M_2^0} g(a) \otimes g \cdot c$$

so that the transfer of

$$I_2 \otimes ([(1+t)I_2|(1+t)I_2] - [1|1]) \otimes 1 = I_2 \otimes ([U|U] - [1|1]) \otimes 1]$$

is represented by

$$I_2 \otimes ([U|U] - [1|1]) \otimes (1 + \sigma + \sigma^2) \cdot 1$$

Next we want to calculate the image under the transfer of

$$I_2 \otimes_{SL_2\mathbb{F}[t]/(t^2)} ([x_{1,1}|x_{1,1}] - [1|1])$$

= $I_2 \otimes_{SL_2\mathbb{F}[t]/(t^2)} ([V + W|V + W]) - [1|1]) \otimes 1$
11

which equals

$$\begin{split} \sum_{g=1,\sigma,\sigma^2} & I_2 \otimes_{\langle \tau \rangle \propto M_2^0} \left([g(V) + g(W)]g(V) + g(W)] - [1|1] \right) \otimes g \cdot 1 \\ &= I_2 \otimes_{\langle \tau \rangle \propto M_2^0} \left([V + W|V + W] - [1|1] \right) \otimes 1 \\ &+ I_2 \otimes_{\langle \tau \rangle \propto M_2^0} \left([W + U + V + W|W + U + V + W] - [1|1] \right) \otimes \sigma \cdot 1 \\ &+ I_2 \otimes_{\langle \tau \rangle \propto M_2^0} \left([U + V + W + V)]U + V + W + V \right] - [1|1] \right) \otimes \sigma^2 \cdot 1 \\ &= I_2 \otimes_{\langle \tau \rangle \propto M_2^0} \left([V + W|V + W] - [1|1] \right) \otimes 1 \\ &+ I_2 \otimes_{\langle \tau \rangle \propto M_2^0} \left([U + V|U + V] - [1|1] \right) \otimes \sigma \cdot 1 \\ &+ I_2 \otimes_{\langle \tau \rangle \propto M_2^0} \left([U + W]U + W] - [1|1] \right) \otimes \sigma^2 \cdot 1. \end{split}$$

The M_2^0 on the left of

$$M_2^0 \otimes_{\langle \tau \rangle \propto M_2^0} \underline{B} M_2^0 \otimes C_*$$

is the direct sum of the trivial $\mathbb{Z}[\langle \tau \rangle \propto M_2^0]$ -module $\mathbb{F}\langle U \rangle$ and the module induced from the trivial $\mathbb{Z}[M_2^0]$ -module. Both our 2-cycles are in the former summand because of the $I_2 \otimes \ldots$ tensor factor.

This summand is $H_*(\langle \tau \rangle \propto M_2^0; \mathbb{Z}/2)$. However there is a group isomorphism

$$\langle \tau \rangle \propto M_2^0 \cong \langle U \rangle \times (\langle \tau \rangle \propto \langle V, W \rangle) \cong C_2 \times D_8.$$

Therefore by the Kunneth formula the first summand is

 $H_*(C_2;\mathbb{Z}/2))\otimes H_*(D_8;\mathbb{Z}/2).$

The mod 2 cohomology of these groups is computed in detail in ([?] p.16 and p.24).

REWRITE FROM HERE ON

Form the $\mathbb{F}_2[SL_2\mathbb{F}_2[t]/(t^2)]$ -resolution of \mathbb{F}_2 of the form

 $P_*(U) \otimes P_*(V) \otimes P_*(W) \otimes C_*$

with $g \in \Sigma_3$ acting via

$$g(a \otimes b \otimes c \otimes d) = g(a) \otimes g(b) \otimes g(c) \otimes g \cdot d$$

and $m \in M_2^0$ acting via

$$m(a \otimes b \otimes c \otimes d) = a \otimes b \otimes c \otimes m \cdot d.$$

Then, if $\mathbb{F}_2[SL_2\mathbb{F}_2[t]/(t^2)]$ acts on M_2^0 on the right by mapping to $SL_2\mathbb{F}_2$ and then conjugating on the right $(X)Y = Y^{-1}XY$ so that

$$((X)Y_1)Y_2) = (Y_1^{-1}XY_1)Y_2 = Y_2^{-1}Y_1^{-1}XY_1Y_2 = (X)(Y_1Y_2).$$

Our model for $H_2(SL_2\mathbb{F}_2[t]/(t^2); M_n^0)$ is the 2-dimensional homology of

$$M_2^0 \otimes_{SL_2\mathbb{F}_2[t]/(t^2)} P_*(U) \otimes P_*(V) \otimes P_*(W) \otimes C_*.$$

The transfer is induced by the chain map from the above complex to

 $M_2^0 \otimes_{\langle \tau \rangle \propto M_2^0} P_*(U) \otimes P_*(V) \otimes P_*(W) \otimes C_*$

which sends $X \otimes_{SL_2\mathbb{F}_2[t]/(t^2)} a \otimes b \otimes c \otimes d$ to

$$\sum_{g=1,\sigma,\sigma^2} (X)g^{-1} \otimes_{\langle \tau \rangle \propto M_2^0} g(a \otimes b \otimes c \otimes d).$$

Now the first of the two 2-cycle representatives which we wish to map is, in terms of the inhomogeneous bar resolution,

$$I_2 \otimes [(1+t)I_2|(1+t)I_2] \in M_2^0 \otimes_{SL_2\mathbb{F}_2[t]/(t^2)} \underline{B}_*SL_2\mathbb{F}_2[t]/(t^2).$$

We know that this represents a non-zero homology class, because d_2 is non-zero on it, and we can see that it originates in

$$M_2^0 \otimes_{\langle U \rangle} \underline{B}_* \langle U \rangle$$

so that in terms of the other resolution it must be represented by

$$I_2 \otimes_{\langle \tau \rangle \propto M_2^0} e_2(U) \otimes e_0(V) \otimes e_0(W) \otimes 1 \in M_2^0 \otimes_{\langle \tau \rangle \propto M_2^0} P_*(U) \otimes P_*(V) \otimes P_*(W) \otimes C_*.$$

Since I_2 is central the image under the transfer of this element is

$$\begin{split} I_2 \otimes_{\langle \tau \rangle \propto M_2^0} e_2(U) \otimes e_0(V) \otimes e_0(W) \otimes 1 \\ + I_2 \otimes_{\langle \tau \rangle \propto M_2^0} e_2(U) \otimes e_0(W) \otimes (e_0(U) + e_0(V) + e_0(W)) \otimes \sigma \cdot 1 \\ + I_2 \otimes_{\langle \tau \rangle \propto M_2^0} e_2(U) \otimes (e_0(U) + e_0(V) \\ + e_0(W)) \otimes (e_0(U) + e_0(W) + (e_0(U) + e_0(V) + e_0(W)) \otimes \sigma^2 \cdot 1 \\ = I_2 \otimes_{\langle \tau \rangle \propto M_2^0} e_2(U) \otimes (1 + \sigma + \sigma^2) \cdot 1. \end{split}$$

The second of the two 2-cycle representatives which we wish to map is, in terms of the inhomogeneous bar resolution,

$$I_2 \otimes [V + W | V + W] \in M_2^0 \otimes_{SL_2 \mathbb{F}_2[t]/(t^2)} \underline{B}_* SL_2 \mathbb{F}_2[t]/(t^2).$$

4. ANOTHER GROUP

I want to examine in detail the group of matrices in $GL_2\mathbb{F}_2[t]/(t^3)$ which reduce to matrices in $SL_2\mathbb{F}_2[t]/(t^2)$. Firstly I shall list all the elements of

$$SL_{2}\mathbb{F}_{2}[t]/(t^{2}).$$

$$I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \ \sigma = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}, \ \sigma^{2} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$$

$$\tau = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \tau\sigma = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \tau\sigma^{2} = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$$

$$U = \begin{pmatrix} 1+t & 0 \\ 0 & 1+t \end{pmatrix}, \ V = \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix}, \ W = \begin{pmatrix} 1 & 0 \\ t & 1 \end{pmatrix}$$

$$UV = \begin{pmatrix} 1+t & t \\ 0 & 1+t \end{pmatrix}, \ UW = \begin{pmatrix} 1+t & 0 \\ t & 1+t \end{pmatrix}, \ VW = \begin{pmatrix} 1 & t \\ t & 1 \end{pmatrix}$$

$$UVW = \begin{pmatrix} 1+t & t \\ t & 1+t \end{pmatrix}, U^{e(u)}V^{e(v)}W^{e(w)}\tau^{e(\tau)}\sigma^{e(\sigma)}$$

with $0 \le e(u), e(v), e(v), e(\tau) \le 1$ and $0 \le e(\sigma) \le 2$. In $GL_2\mathbb{F}_2[t]/(t^3$ we have

$$\left(\begin{array}{cc} 1+at^2 & bt^2 \\ ct^2 & 1+dt^2 \end{array}\right) U^{e(u)} V^{e(v)} W^{e(w)} \tau^{e(\tau)} \sigma^{e(\sigma)}$$

with $0 \le a, b, c, d \le 1$.

Next let us examine conjugation by the base on the fibre. We have

$$\begin{pmatrix} 1+at^2 & bt^2 \\ ct^2 & 1+dt^2 \end{pmatrix} \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1+at^2 & t+bt^2 \\ ct^2 & 1+dt^2 \end{pmatrix}$$

while

$$\begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1+at^2 & bt^2 \\ ct^2 & 1+dt^2 \end{pmatrix} = \begin{pmatrix} 1+at^2 & bt^2+t \\ ct^2 & 1+dt^2 \end{pmatrix}$$

and

$$\begin{pmatrix} 1+at^2 & bt^2 \\ ct^2 & 1+dt^2 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ t & 1 \end{pmatrix} = \begin{pmatrix} 1+at^2 & bt^2 \\ ct^2+t & 1+dt^2 \end{pmatrix}$$

while

$$\left(\begin{array}{cc}1&0\\t&1\end{array}\right)\left(\begin{array}{cc}1+at^2&bt^2\\ct^2&1+dt^2\end{array}\right) = \left(\begin{array}{cc}1+at^2&bt^2\\t+ct^2&1+dt^2\end{array}\right)$$

so that U, V, W all centralise the fibre subgroup.

Can one find 3 matrices in the fibre which transform in the second manner under conjugation. We would need

$$u = \begin{pmatrix} a & b \\ b & a \end{pmatrix}_{14}$$

fixed by σ -conjugation. Therefore

$$\sigma u \sigma^2 = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} a & b \\ b & a \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$$
$$= \begin{pmatrix} b & a \\ a+b & a+b \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$$
$$= \begin{pmatrix} a+b & b \\ 0 & a+b \end{pmatrix}.$$

Therefore

$$u = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \text{ aka } \begin{pmatrix} 1+t^2 & 0 \\ 0 & 1+t^2 \end{pmatrix}.$$

$$e \tau(v) = w = \sigma(v) \text{ If }$$

Next we would like $\tau(v) = w = \sigma(v)$. If

$$v = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 and $w = \begin{pmatrix} a' & b' \\ c' & d' \end{pmatrix}$

the $\tau\text{-}\mathrm{action}$ implies

$$w = \left(\begin{array}{cc} d & c \\ b & a \end{array}\right).$$

In addition

$$\sigma v \sigma^2 = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$$
$$= \begin{pmatrix} c & d \\ a+c & b+d \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$$
$$= \begin{pmatrix} c+d & c \\ a+b+c+d & a+c \end{pmatrix}.$$

so that c = 0, a = d = 1. Hence

$$v = \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix}$$
 and $w = \begin{pmatrix} 1 & 0 \\ b & 1 \end{pmatrix}$.

Next we conjugate w by σ

$$\sigma w \sigma^2 = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ b & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$$
$$= \begin{pmatrix} b & 1 \\ 1+b & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$$
$$= \begin{pmatrix} 1+b & b \\ b & 1+b \\ 15 \end{pmatrix}.$$

so that if b = 1

$$\sigma w \sigma^2 = \sigma^2 v \sigma = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = v + w.$$

5. A third group

Consider the homomorphism

$$SL_n\mathbb{Z}/4[t]/(t^2) \xrightarrow{\pi} SL_n\mathbb{Z}/2[t]/(t^2).$$

Let

$$X = \begin{pmatrix} a+bt & c+dt \\ \\ e+ft & g+ht \end{pmatrix} \in SL_2\mathbb{Z}/4[t]/(t^2).$$

In order to lie in $SL_n\mathbb{Z}/4[t]/(t^2)$ we must have

$$det(X) = (a+bt)(g+ht) - (c+dt)(e+ft) = ag+bgt+aht-ce-det-cft \equiv 1$$

which means that

$$ag - ce \equiv 1, bg + ah \equiv de + cf \pmod{4}$$
.

Now consider ker(π) when n = 2. A matrix in this kernel has the form

$$X = \left(\begin{array}{cc} 1+2a+2bt & 2c+2dt\\ 2e+2ft & 1+2g+2ht \end{array}\right)$$

in addition to satisfying the congruences

$$(1+2a)(1+2g) \equiv 1, \ 2b(1+2g) + (1+2a)2h \equiv 0 \pmod{4}$$

which is equivalent to

$$2a + 2g \equiv 0, \ 2b + 2h \equiv 0 \pmod{4}.$$

Hence $X \in \ker(\pi) \bigcap SL_2 \mathbb{Z}/4[t]/(t^2)$ has the form

$$X = \begin{pmatrix} 1+2a+2bt & 2c+2dt \\ \\ 2e+2ft & 1+2a+2bt \\ \\ 16 \end{pmatrix}.$$

Next we observe that

$$\begin{pmatrix} 1+2a+2bt & 2c+2dt \\ 2e+2ft & 1+2a+2bt \end{pmatrix} \cdot \begin{pmatrix} 1+2a'+2b't & 2c'+2d't \\ 2e'+2f't & 1+2a'+2b't \end{pmatrix}$$
$$= \begin{pmatrix} (1+2a+2bt)(1+2a'+2b't) & 2c+2dt+2c'+2d't \\ 2e+2ft+2e'+2f't & (1+2a+2bt)(1+2a'+2b't) \end{pmatrix}$$
$$= \begin{pmatrix} 1+2a+2bt+2a'+2b't & 2c+2dt+2c'+2d't \\ 2e+2ft+2e'+2f't & 1+2a+2bt+2a'+2b't \end{pmatrix}$$

so that $\ker(\pi) \bigcap SL_2\mathbb{Z}/4[t]/(t^2)$ is an abelian group isomorphic to

 $M_2^0 \mathbb{F}_2 \times M_2^0 \mathbb{F}_2.$ Next we examine how $M_2^0 \mathbb{F}_2 \subset \Sigma_3 \propto M_2^0 \mathbb{F}_2 \cong SL_2 \mathbb{Z}/2[t]/(t^2)$ acts on $\ker(\pi) \bigcap SL_2 \mathbb{Z}/4[t]/(t^2).$ $M_2^0 \mathbb{F}_2$ is generated by the three matrices U, V, Wgiven by

$$U = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, V = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, W = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}.$$

Hence U corresponds to the matrix

$$U = \left(\begin{array}{cc} 1+t & 0\\ 0 & 1+t \end{array}\right)$$

which lifts to

$$\hat{U} = \left(\begin{array}{cc} 1+3t & 0\\ 0 & 1+t \end{array}\right), \ \hat{U}^{-1} = \left(\begin{array}{cc} 1+t & 0\\ 0 & 1+3t \end{array}\right).$$

We have

$$\begin{pmatrix} 1+3t & 0\\ 0 & 1+t \end{pmatrix} \begin{pmatrix} 1+2a+2bt & 2c+2dt\\ 2e+2ft & 1+2a+2bt \end{pmatrix} \begin{pmatrix} 1+t & 0\\ 0 & 1+3t \end{pmatrix}$$

$$= \begin{pmatrix} 1+2a+2bt+3t+2at & 2c+2dt+2ct\\ 2e+2ft+2et & 1+2a+2bt+t+2at \end{pmatrix} \begin{pmatrix} 1+t & 0\\ 0 & 1+3t \end{pmatrix}$$

$$= \begin{pmatrix} 1+2a+2bt+3t+2at + t+2at & 2c+2dt+2ct+2ct\\ 2e+2ft+2et+2et & 1+2a+2bt+t+2at+3t+2at \end{pmatrix}$$

$$= \begin{pmatrix} 1+2a+2bt & 2c+2dt\\ 2e+2ft+2et+2et & 1+2a+2bt+t+2at+3t+2at \end{pmatrix}$$

$$= \begin{pmatrix} 1+2a+2bt & 2c+2dt\\ 2e+2ft & 1+2a+2bt \end{pmatrix}$$

$$= \begin{pmatrix} 1+2a+2bt & 2c+2dt\\ 2e+2ft & 1+2a+2bt \end{pmatrix}$$

so that U acts trivially.

Similarly V corresponds to the matrix

$$V = \left(\begin{array}{cc} 1 & t \\ 0 & 1 \end{array}\right)$$

which lifts to

$$\hat{V} = \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix}, \ \hat{V}^{-1} = \begin{pmatrix} 1 & 3t \\ 0 & 1 \end{pmatrix}.$$

We have

$$\begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1+2a+2bt & 2c+2dt \\ 2e+2ft & 1+2a+2bt \end{pmatrix} \begin{pmatrix} 1 & 3t \\ 0 & 1 \end{pmatrix}$$
$$= \begin{pmatrix} 1+2a+2bt+2et & 2c+2dt+t+2at \\ 2e+2ft & 1+2a+2bt \end{pmatrix} \begin{pmatrix} 1 & 3t \\ 0 & 1 \end{pmatrix}$$
$$= \begin{pmatrix} 1+2a+2bt+2et & 2c+2dt+t+2at+3t+2at \\ 2e+2ft & 1+2a+2bt+2et \end{pmatrix}$$
$$= \begin{pmatrix} 1+2a+2bt+2et & 2c+2dt \\ 2e+2ft & 1+2a+2bt+2et \end{pmatrix}.$$

Therefore V acts trivially on the fibre group if $2e \equiv 0 \pmod{4}$. Similarly W corresponds to the matrix

$$W = \left(\begin{array}{cc} 1 & 0\\ t & 1 \end{array}\right)$$

which lifts to

$$\hat{W} = \begin{pmatrix} 1 & 0 \\ t & 1 \end{pmatrix}, \quad \hat{W}^{-1} = \begin{pmatrix} 1 & 0 \\ 3t & 1 \end{pmatrix}.$$
18

We have

$$\begin{pmatrix} 1 & 0 \\ t & 1 \end{pmatrix} \begin{pmatrix} 1+2a+2bt & 2c+2dt \\ 2e+2ft & 1+2a+2bt \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 3t & 1 \end{pmatrix}$$
$$= \begin{pmatrix} 1+2a+2bt & 2c+2dt \\ 2e+2ft+t+2at & 1+2a+2bt+2ct \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 3t & 1 \end{pmatrix}$$
$$= \begin{pmatrix} 1+2a+2bt+2ct & 2c+2dt \\ 2e+2ft+t+2at+3t+2at & 1+2a+2bt+2ct \end{pmatrix}$$
$$= \begin{pmatrix} 1+2a+2bt+2ct & 2c+2dt \\ 2e+2ft+t+2at+3t+2at & 1+2a+2bt+2ct \end{pmatrix}.$$

Therefore W acts trivially on the fibre group if $2c \equiv 0 \pmod{4}$. Now consider the 2-cycles made from the matrices in $SL_2\mathbb{F}_2[t]/(t^2)$

$$z = \begin{pmatrix} 1+t & 0 \\ & & \\ 0 & 1+t \end{pmatrix}, \text{ and } x = \begin{pmatrix} 1 & t \\ & & \\ t & 1 \end{pmatrix}$$

We lift x to

$$X = \begin{pmatrix} 1+2a+2bt & 2c+(1+2d)t \\ 2e+(1+2f)t & 1+2a+2ht \end{pmatrix} \in SL_2\mathbb{Z}/4[t]/(t^2)$$

The conditions that $X \in SL_2\mathbb{Z}/4[t]/(t^2)$ are

$$(1+2a)(1+2a) - 2c \cdot 2e \equiv 1,$$

 $2b(1+2a) + (1+2a)2h \equiv (1+2d)2e + 2c(1+2f) \pmod{4}$

of which the first condition is satisfied automatically by X and the second is equivalent to

$$2b + 2h \equiv 2e + 2c \pmod{4}$$

so we may write

$$X = \begin{pmatrix} 1+2a+2bt & 2c+(1+2d)t \\ 2e+(1+2f)t & 1+2a+(2c+2b+2e)t \\ 19 \end{pmatrix} \in SL_2\mathbb{Z}/4[t]/(t^2)$$

Next we must compute

$$\begin{aligned} X \cdot X \\ &= \begin{pmatrix} 1+2a+2bt & 2c+(1+2d)t \\ 2e+(1+2f)t & 1+2a+(2c+2b+2e)t \end{pmatrix} \cdot \\ & \begin{pmatrix} 1+2a+2bt & 2c+(1+2d)t \\ 2e+(1+2f)t & 1+2a+(2c+2b+2e)t \end{pmatrix} \\ &= \begin{pmatrix} 1+2ct+2et & 2+(2c+2e)t \\ 2+(2c+2e)t & 1+2et+2ct \end{pmatrix} \end{aligned}$$

We lift

$$z = \left(\begin{array}{cc} 1+t & 0\\ & \\ 0 & 1+t \end{array}\right)$$

to

$$Z = \begin{pmatrix} 1+2a+(1+2b)t & 2c+2dt \\ 2e+2ft & 1+2a+(3+2b)t \end{pmatrix} \in SL_2\mathbb{Z}/4[t]/(t^2)$$

whose determinant is equal to

$$(1+2a)(1+2a+3t+2bt) + (1+2b)t(1+2a+3t+2bt)$$

= 1+2a+3t+2bt+2a+2at+t+2at+2bt
= 1+4t

so that $Z \in SL_2\mathbb{Z}/4[t]/(t^2)$.

Next we compute

 $Z \cdot Z$

$$= \begin{pmatrix} 1+2a+(1+2b)t & 2c+2dt \\ 2e+2ft & 1+2a+(3+2b)t \end{pmatrix}$$
$$\begin{pmatrix} 1+2a+(1+2b)t & 2c+2dt \\ 2e+2ft & 1+2a+(3+2b)t \end{pmatrix}$$
$$= \begin{pmatrix} 1+2t & 0 \\ 0 & 1+2t \end{pmatrix}$$

Therefore choosing e = c = 0 in the lift X we find that pairing with the difference of our two 2-cycles yields

$$I_{2} \otimes \begin{pmatrix} 1 & 2t \\ \\ 2t & 1 \end{pmatrix} - I_{2} \otimes \begin{pmatrix} 1+2t & 0 \\ \\ \\ 0 & 1+2t \end{pmatrix} \in (M_{2}^{0} \otimes M_{2}^{0})_{SL_{2}\mathbb{F}_{2}[t]/(t^{2})}$$

which is non-zero!

References

- P.J. Hilton and U. Stammbach: A course in homological algebra; Springer Verlag Grad. Texts in Math. 4 (1971).
- [2] J. Aisbett and V.P. Snaith: K_3 of truncated polynomial rings over fields of characteristic two; Math. Proc. Camb. Phil. Soc. **101** (1987(=) 509-521.
- [3] V.P. Snaith: Topological Methods in Galois Representation Theory, C.M.Soc Monographs, Wiley (1989) (republished by Dover in 2013).