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1. THE 2-COCYCLE
Let F = Fya and consider the group extension
M) — SL,F[t]/(t*) = SL,F[t]/(t*)
where MY? is the subgroup of Ker(7) given by
M? = {1+ Xt* | det(1 + Xt*) = 1}.

Since
1+ Xt2 Xot? . o Xt?
Xort? 14+ Xpot? ... ... Xopt?
det( . . . :
X112 Xt o 1+ Xt

= 1 + Trace(X)t? (modulo %)

so that MY? is isomorphic to the additive abelian group given by the trace
zero n X n matrices with entries in in IF.
Choose a map of sets, which is a right inverse to m,

h: SL,F[t]/(t*) — SL.F[t]/(t?).

If X € SL,F[t]/(t?) we may write X as X = Xy + Xt where X, € SL,F
and X is a trace zero n X n matrix with entries in in F. The formula for the
determinant shows that there is an n x n matrix X5 with entries in IF such
that h(X) = Xo + Xit + Xot? € SL,F[t]/(t?).

Example 1.1. Consider the 2 x 2 matrix

z= ( o ) € SLoF[t]/(12).
We have 22 = 1 € SL,F[t]/(¢*). In GLyF[t]/(t*) we have

1+t
L A |
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which satisfies 7(y) = = and
det(y) =1+t +t*=1

so that we may choose h(z) = y. However

s o [ 1+t ¢t 1+t ¢\ [ 1+ 0
h(x)_y_( t 1 t 1) 0 1+ )7L

Therefore the restricted group extension
My — 77 (@) — (@)
is not split.
Next we are going to write down explicitly the 2-cycle
A : SL,F[t)/(t*) x SL,F[t]/(t*) — M,

in the convention of the inhomogeneous bar resolution ([?] p. 41). In terms
of a section h of 7 the formula is

A([X1]1X3]) = h(X1)h(Xo)h(X1 X)) ! € ML,
We need to show that A is a 2-cycle, which is the condition
AE(Xol X3 X)) = 1.
Explicitly
Xo(A([X1] X)) (A([X0 X1 | X)) ™ A([Xo| X1 X)) (A([Xo X))~ = 1.
In the first of these four terms the action of Xy on A([X;|Xy]) is by reduction
Xo— Xy € SL,F following by conjugation.
Write
A = Xo(A([X1]Xa))) = Xo(h(X)h(X2)h(X, X)X,
B_l == A([XOX1|X2]) - h(XoXl)h(Xg)h(X()XlXQ)_l,
B = h(Xo X1 X2)h(X2)Th(XoX1) 71,
C= A([X0|X1X2]) = h(XO)h(XlXQ)h(XOXlXQ)iI,
Dt = A([X0|X1]) = h(Xo)h(Xl)h(XoXl)il,

D = h(XoX1)h(X1) " h(X) L.

Now we have

A(6(Xo|X1|Xp]) = ABCD = ACBD.
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Therefore

1

— Xo(h(X1)h(X2) (X1 X5) )X, '

h(Xo)h(X1X5) x h(X2) " h(X1) h(Xo) ™

e 1

= Xo(h(X1)h(X2)h(X1 X2) )X, x

-1

70h(X1X2> X h(XQ)_lh(Xl)_lyo

because h(X1X2) x h(X2) 'h(X:)™! € M? and h(Xp) conjugates MY by first
reducing to X,. Therefore

A(6(Xo| X1] X))

-1

= Xoh(X1)h(X2)h(X1X2) T h(X1X5) x h(Xa) " h(X1) 7' X,

=1,

as required.
This shows that there is a cohomology class

[A] € H*(SL,F[t]/(£*); M)

which must be non-zero since the restriction to H?*({x); M?) represents the
non-split extension of Example 77.
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Now consider the composition
Hy(SLuF[t]/(#2); My) @ H*(SLaF[t] /(£*); M)

| evaluation
Ho(SLaF[t]/(#2); My @ M)
| =
(M ® My)sw,w )
1T

F

where T'(A ® B) = Trace(AB).
Next we shall attempt to calculate the image under this map, but without
the final map 7.

Theorem 1.2. (Charlap and Vasquez)
The above composite map, but without the final map T, is the differential

dy : B3, = Hy(SL,F[t]/(t*); My) 2 F & F — Ej, = (M, @ M) s, 50/(2)-

Firstly let us make the pairing explicit on the chain level. If (B,G, d) is the
inhomogeneous bar resolution with left free G-action then H*(SL,F[t]/(t*); M)
is the 2-dimensional homology of the cochain complex

Homsy, w2 (B, SL.Ft]/ (%), M)
with differential d* = (— - d) and SL,F[t]/(t*) acting on the left of M? by
reduction to SL,F) following by conjugation X (A) = XAX ' The homology
Ho(SL,F[t]/(t%); M?) is the 2-dimensional homology of the chain complex
M,) @s,¥1/2) B.SLaF[t]/ ()
with differential 1 ® d. This time SL,F[t]/(¢*) acts on the right of M? by
reduction to SL,F) following by conjugation (A)X = X 'AX.
With these actions we have
A®gr,F/2) X(b) = X 'AX ®sr.F(1/2) b € My @sr,w1,/2) BLSLnF[t]/ ()
so that if
f € Homgy, v/ 2) (B.SLaFt]/ (%), M)
then
AX[MX =X "AX @ f(b) € (M° ® MO)sp 51002
so that 1 ® f gives a well-defined map which lands in the SL,F[t]/(t?)-

coinvariant quotient of M? @ M? where the action is the diagonal action
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on the left of each M?-factor. These invariants are mapped in a well-defined
manner to [F by the trace of the product.
Consider matrices of the form, A\, y € F*

Ty = ( ;t Y > € SL.F[t]/(12).

1 At 1 X\ (10
ut 1 ut 1) L0 1
and z,, commutes with x . In fact
1 M 1 Nt 1 (A -+ Nt
ut 1 wt 1)\ (4 )t 1 '
Also a lift of ), to SLoF[t]/(t?) is given by
1+ Mut? M
ut 1)
The square of this lift is given by
14+ Aut? M L+t M\ 1+ dut? 0
ut 1 it 1) 0 1+ Aut? )
Therefore for each X, A\, 4 we have a cycle

X ®sr, /) ([Eaplzan — [11]) € My @si,w2) BoSLaF[t]/(£%)

since ', maps to the identity in SL,IF.
The image of

We have

(X ®sr,r/02) ([Taplrau] — [1[1])] @ [A]
in
(M ® M,))sr, w0/
is the class of
A2 0
do(X QSLF[t]/(t2) [%\,ul%\,u]) =XQ® ( 0 Aut? )

Choosing X to equal the 2 x 2 identity matrix gives a map to a copy of F
in (M ® M) st mi/(2)-

Next consider the matrix

1+ Aut 0
2y = ( o ey ) € SL.F[t]/(2).

o [ 1+ NP 0 .
AT 0 T+ A2%2 ) =

14+ M+ \2t? 0
0 14+ Mt
5

We have

We may choose

h(z\) =



since det(h(zy) = 1+ A2+ A%? = 1 (modulo #?) so that h(zy) € SLoF[t]/(t3).
In addition

_(TEXENE 0 LM+ N 0 _ 2,2
MZA)_( 0 1+>\t)( 0 1+At)_(”“)12'

Therefore X ®gr,r/¢2) ([22]22] — [1]1]) is a 2-cycle and

At 0
dQ(X QSLyF[t]/(£2) ([ZA|Z>\] - [1|1])) =X® 0 N2 )

Therefore
do(X ®gr.m/2) ([2al2a] = [Taalzan]) = 0.

Question 1.3. Is

X ®sror/2) ([2al2a] = [maa]zan])

non-zero in £3,7 In ([?] p.519 Prop 5.19) it is shown that £, = F @ F by
an elaborate series of calculations. Perhaps the details of these would answer
this question?

This question will be resolved in Section Three.

Example 1.4. Consider SLsFy = GLsFy =2 Y5 generated by

(01 (01
\l10)077{11
3 2

satisfying 72 = 1 = 03,707 = 02
SLQ]FQ[t]/(t2> = 23 X Mg where

o= (59)v=(83) w-(0))

and T(U)=U =0U),7(V)=W,a(V)=W,c(W)=U+V +W.

However there is another Y3-action on My given by 7(U) = U = o(U),7(V) =
W,o(V)=W,o(W)=V +W.

If a: MY — MY transport the first action to the second, assume that the
matrix of a with respect to the ordered basis is

a o a
a=[ 0 b V
c ¢

Therefore a(7(U)) = 7(a(U)) implies that
alU + bV +cW =aU + cV + bW
so that b = ¢. Also a(c(U)) = o(a(U)) implies that
aU + bV + bW = aU + bW +b(V + W) = aU + bV
so that b =0 and a = 1. Next consider a(7(V)) = 7(a(V)) which implies
d'U+V'V+ "W =7U+VV+IW)=dU+VW+V
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so that @' = a”, b" = ¢ and ¢ = ¥'. The relation a(c(V)) = o(a(V')) which
implies

AU~V +UW =0(dU+b0V + W) =dU+6W+(V+W)
so that ¢ = 0. The relation a(c(W)) = o(a(WV)) implies
U4dU+b0V+dU+VW =0(U+VW)=dU+V(V+W)
so that

o

I
OO =
O~ =
—_ O

This matrix satisfies o? = 1.

2. THE CONSTRUCTION OF THE SPECTRAL SEQUENCE
The homology spectral sequence used in [?]
Er, = H(SL,F[t]/(t*); Hy(M,))) = Ho1(SLF[t)/(°): Z),
whose differentials have the form
dy : Ef’,s - Ei—t,s—l—t—l’

is an example of the first Grothendieck spectral sequence ([?] p.297) of a
bicomplex (A, ., dr + djr).
Let us partially recall its construction. We have two group extensions

G? — SL,F[t]/(#*) — SL,F
and
G? — SL,F[t]/(t*) — SL,F.

Recall that the inhomogeneous bar resolution of G' has a differential

= 21[za| -] + 00T () 2] Tl - )

+(=1)™[xq] ... |Tm1]-
Set
Ars = @4—0 Cr-aa,s
and
Cijk = Z ®sr, w12 BpGo ® (ﬁjGi ® B,SL,F).

Here g € SL,F acts by conjugation g(y[yi|. .. yu]) = 9(¥)lg(v1)|. .. 9(yu)] on
B.G? and B,G2. G? acts as usual on its inhomogeneous bar resolution and

on that of G2 via reduction and then the usual G2-action on B,G?2. Putting
these actions together - diagonally - gives an SL,F[t]/(#?)-action making

B,G> @ B;SL,F
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into a free resolution of the semi-direct product SL,F[t]/(¢?). Therefore A, .
is a free resolution of SL,F[t]/(t?) with the differential d; + d;; given by

di(z) = (-D)"1@00 1+ (-1)"Y1®1®0)(r), xcCiji
and
d[[(ﬂ?) = (3 X 1 X 1)(33), €T € Ci,j,k'
Note that
d] : Ar,s - Arfl,s and dII : Ar,s - Ar,sfl-
The filtration which gives rise to the first spectral sequence is
Fp(@r+s:m Ar,s) - @r—i—s:m,sgp Ar,s
so that FP~' C FP and d;;(F?) C FP~!. In addition
Fp(@r+s:m A'r,s)/Fp_1<@r+s:m Ar,s) = Am—p,p

and E},_  is the homology at A,,_p, of the complex

drr drr drr
: > Am—p,p ? Am—p,p—1 SRR

The differential d; induces a chain complex

dr

dy 1 dy 1
— — —
LR P S

E? = HiHyj.

whose homology at E, _ is E,_

We have
Ap—pp = ®ped L Qs B,Go ® B,Gr @ B, , ,SL,F

l dp=001®1

Ap—pp1 =B L Qsr, /w5 B, 1Go ®B,G,®B,, , SL.F
so that
By pp = Hy(G}) @sp,510/(2) Bim—pLOsL,rit/(22)

m—p,p
where B.Z®sy, w12 is a free SL,F[t]/(t?)-resolution of Z so that

(HIHII>T‘,S = Ef,s = HT(SLnF[t]/(tZ)Q HS(MT(L]))7

as required.

The successive differentials on the successive Ei* s eventually gives a “ter-
minal” answer 75, which is isomorphic to the associated graded of the filtra-
tion on H,,(SL,F[t]/(t®);Z) corresponding to the images of the homology
the [FPA,.)’s.

It is show in [?] that, in the spectral sequence we are considering,

FO=0,F'/F°2F@F F?/F'2F F*/F?®Z, = 0.
8
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3. ADDRESSING QUESTION 77
In this section I shall compute the injective transfer map
i* : Hy(SLoFs[t]/(t7); MJFy) — Ho(() o< MyFo; MJTFs).
This map is injective because
SLyFy = GLoFy 2 %3 = {10 |7° =1 =0", 707 = 07}

and
SLyFs[t]/(t?) = B3 oc MIT,.

If z generates a cyclic group of order n write P,(g) — Z for the free
resolution of the trivial module Z of the form

- Z{(9)]ealg) — Zl(g)]er(g9) — Z[{g)leolg) — Z

where d(ean(9)) = (1+g+... 49" eam-1(9), d(eam-1(9)) = (1 - g)eam-2(9)
and €(eg(g)) = 1.
Since MY = (U) ® (V) @ (W) a free Z|MJ]-resolution is given by

P(U)® P.(V)® P.(W)
with differential on P,(U) ® Py(V) @ P.(W)
d=d®1@1+ (-1)de1e1+ (-1)""do1 1.

Now to construct a free 33 = (1) o (o)-resolution. First we must decide
how to let 7 act on the left of P,(0). The action on the inhomogeneous bar
resolution of (o) would be

7(glg1lgel - - 1g:)) = ()T (g1)|7(g2)] - - I7(g)
and the map ([?] p.17)
¢: P.(0) — B,{0)
is given by
o, [0 olo2|o]. .. |o%|o]  if i =2s

¢(ei(0)) = o ,
> lolo™|olo®|a|. .. |o*|o] if i =25+ 1.

It seems difficult to define the involution 7 directly on the small resolution
so form the tensor product

Cs = Datb=s Ea<0> ® Pb<7)

with differential d = d®14(—1)*1®d and ¥3-action given by o(z®y) = 0-x®y
and 7(x®y) = 7(z)®7-y. This is a chain complex of free 33 modules because

o(dz®y)) =o-dz)@y+ (1) -z dy)

= d(o - x)9® y+ (=)0 -z @d(y)



and
T(dz®y)) =7(d®) @7 y+(-1)"7(x) @7 -d(y)

=d(r(x)@7-y+ (-1)*(z) @7 - d(y).
Furthermore
Tlo(z@y) =7(0-2@y)=71(0-2)@7-y=7(0) - 7(x) T -y
while

(rlr@y) =c'(r(r) @71 y) =0’ 1(x)®7 y)=7(0) T(r) @7y
which shows that the actions provide a »3-module structure.

Next we need a Yz-action on the resolution for MJF,. This does not seem
to work on the resolution P,(U) ® P,(V) ® P.(W). Recall that the action on
U, V, W in the semi-direct product is given by

T(U)=U=0cU),7(V)=W,oc(V)=W,c(W)=U+V +W.
This suggests the action
7(es(U)) = es(U) = a(es(U)), 7(es(V)) = es(W), 7(es(W)) = es(V)
and
o(es(V)) = es(W), a(es(W)) = es(U) + es(V) 4+ es(W).
This is indeed a Fy[¥3]-action because
o*(es(V)) = a*(es(W)) = o(es(U) + es(V) + es(W))

= e,(U) + es(W)) + o(es(U) + es(V) + es(W))

= e4(V) (modulo 2)

which will almost suffice for our purposes since we are eventually going to
work in cohomology with coefficients in MY,

However, the problem is that P.(U) ® P.(V) ® P.(W) is not preserved
by this action, which spreads out onto something more like the symmetric
algebra.

Therefore we had better use the inhomogeneous bar resolution BMY. Since
g € Y3 acts on the group My as described above it acts on the bar resolution
by

golzal - znl) = gCola(2)l . g(zm)]
Form the Z[SL,F,[t]/(t?)]-resolution of Z of the form

BM) ® C,
with g € Y3 acting via
gla®c)=gla)®g-c
and m € MY acting via

m(a®c)=m-a®c.
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We have to verify that both sides of
(9, 1)(L, g7 (m)) = (g,m) = (1,m)(g, 1) = (g,m) € Ty o My
which follows since
(9;1)(1,97 (m))(@a®c) = (g,1)(g""(m) -a®c) =m-gla) @ g-c
while
(Lm)(g, 1)@ ®c) = (L,m)(gla) 8 g-c) =m- gla) ® g-c.

Now the first of the two 2-cycle representatives which we wish to map is,
in terms of the inhomogeneous bar resolution,

Lo ([(1+t)L|(1+ )] — [111]) € MY ®sr,m,¢2) B.SLFa[t]/ ().

We know that this represents a non-zero homology class, because ds is
non-zero on it, and we can see that it originates in

M3 @wy B.(U)
so that in terms of the other resolution it is represented by
L ((1+1)L|(1+8)L] —[11]) ® 1 € My @spm,00/02) BMy @ C.,

where 1 € () on the right and the other 1 is the neutral element of the group.
The transfer is induced by the chain map from

My ®s1,m,01(2) BMs ® C,

to
which sends X ®gr,m,[1/2) @ ® ¢ to

Z (X)gil ®<T>O(Mg g(a) ®g-c

J=1.0.02
so that the transfer of
Le((1+0)L/(1+t)L —[11])®l=L ([U|U]-[11]) ®1]
is represented by
L (UU-[11])®(1+0+0?) -1,
Next we want to calculate the image under the transfer of

I ®@sr,mp/2) ([T1,1]21,1] = [1]1])

= 1) ®gp,mm)2) ((V AWV +W]) = [11]) @1
11



which equals
D g—1002 L2 ®@yenrg ([9(V) +g(W)|g(V) +g(W)] = [1[1) ®g-1

= I @pryoers (V+ WV + W] = [1]) ©1
I @ yorsy (WHU+VAW|W U +V+W] = [11]) @01
+I ®yorsg (U VAW A VUV +W V] = [1[1]) @ 02 - 1
= I @prysersg (V+ WV + W] = [11]) ®1
+12 @ryocrsy (U +VIU+V]=[1[1]) @0 -1

+1, ®(ryocM? ([U+W)|U+ W] - [1|1])®02-1.
The M7 on the left of
is the direct sum of the trivial Z[(T) oc MJ]-module F(U) and the module
induced from the trivial Z[MJ]-module. Both our 2-cycles are in the former
summand because of the I, ® ... tensor factor.
This summand is H,((T) oc MY;Z/2). However there is a group isomor-
phism
(r) oc My = (U) x ((7) o< (V,W)) = Cy x Ds.
Therefore by the Kunneth formula the first summand is
H.(Cy7Z)2)) ® H.(Ds;Z/2).

The mod 2 cohomology of these groups is computed in detail in ([?] p.16 and
p.24).

REWRITE FROM HERE ON

Form the Fy[SLoFy|t]/(t%)]-resolution of Fy of the form

P(U)®P(V)® P,(W)® C,
with g € Y3 acting via
ga@b®@c®d)=g(a)@g9(b)®g(c)®@g-d
and m € MY acting via
mab®cd) =a®b®c®@m-d.

Then, if Fo[SLyFy[t]/(t?)] acts on MY on the right by mapping to SLyFy and
then conjugating on the right (X)Y =Y 1XY so that

(X)Y1)Y2) = (V71X Y)Y, = Y5 VTS = (X)(V1Ya).
Our model for Ho(SLyFs[t]/(t%); MP) is the 2-dimensional homology of
My ®@s1,m01/2) Pe(U) © Po(V) © Po(W) ® C..
12



The transfer is induced by the chain map from the above complex to
M3 ®(ryrrg Po(U) @ Pu(V) @ P.(W) & C,

which sends X ®gr,m/@2) ¢ @b @ c®d to

Z (X)g_l ®(T>0<M§ g(a R c® d)

g=1,0,02

Now the first of the two 2-cycle representatives which we wish to map is,
in terms of the inhomogeneous bar resolution,

L [(1+)L|(1+ )] € My ®sp,m,pm/2) B.SLaFa[t]/ (7).

We know that this represents a non-zero homology class, because ds is
non-zero on it, and we can see that it originates in

M3 @@y B.(U)
so that in terms of the other resolution it must be represented by
L&y 2(U)@eo(V)@eg(W) @1 € My® ryansg Pu(U) R Pu(V) R P(W)&C,.
Since I5 is central the image under the transfer of this element is
Iy ®(ryocnsg €2(U) @ eo(V) @ eo(W) ® 1
+12 @ (ryocar €2(U) @ eo(W) @ (eo(U) + eo(V) + eo(W)) @ 0 - 1
+12 @ (ryocrr €2(U) ® (eo(U) + eo(V)
+eo(W)) @ (eo(U) + eo(W) + (eo(U) + eo(V) + eo(W)) @ 02 - 1
= I @(ryoeng €2(U) @ (L+0 +0°) - 1.

The second of the two 2-cycle representatives which we wish to map is, in
terms of the inhomogeneous bar resolution,

L ® [V + le + W] € Mg ®SL2F2[t}/(t2) E*SLQ]FQ[t]/<t2).

4. ANOTHER GROUP

I want to examine in detail the group of matrices in GLyF,[t]/(t*) which

reduce to matrices in SLoF5[t]/(t?). Firstly I shall list all the elements of
13



O =
—

(i) () (1)

1+t ot [ 1+t 0 (1t
v (5 ) o= () o= (0 1)

1+t ¢t

UVWZ( t 14t

) 7 Ue(u) Ve(v) We(w)Te(T)O.e(a)

with 0 < e(u), e(v), e(w),e(r) < 1and 0 < e(o) < 2. In GLyFs[t]/(1* we have

( 14 at®> b2

Ct2 n dtQ ) Ue(u) Ve(v) We(w),]_e(r)ae(a)

with 0 < a,b,c,d < 1.
Next let us examine conjugation by the base on the fibre. We have

1+at?*  bt? 1t [ 1+4at® t+0bt?
ct?* 1+ dt? 01 )" ct?  1+dt?

while
1t 1+at?*  bt? [ 1+at* b+t
0 1 ct? 14+dt? | — ct? 1+ dt?
and
1+at*  bt? 1 0\ [ 1+4at* bt?
ct? 1+ dt? t 1)\ et?+t 1+4dt?
while

10 1+at*  bt? o 14at* b
t 1 ct*  14dt* ] T\ t+ct? 14 di?
so that U, V, W all centralise the fibre subgroup.

Can one find 3 matrices in the fibre which transform in the second manner
under conjugation. We would need



fixed by o-conjugation. Therefore

Therefore

(10 1+ 0
U=\p 1 )2 0 1+¢ )

the T-action implies

In addition

- c+d c
“\a+b+c+d a+c )’

so that c =0,a =d = 1. Hence

(1b dw_ (10
’U—OlaHUI—bl.

Next we conjugate w by o



sothatif b =1

e (O 1)y
owo - = 0 V0 = 10 = w.

5. A THIRD GROUP

Consider the homomorphism
SLLZ/A/() = SLZ/2[t]/ ().

Let
at+bt c+dt

X = € SL,Z/A[t]/ (7).
e+ ft g+ ht
In order to lie in SL,Z/4[t]/(t*) we must have
det(X) = (a+0bt)(g+ht) — (c+dt)(e+ ft) = ag+bgt+aht —ce—det —cft = 1
which means that
ag —ce =1, bg+ ah = de + ¢f (modulo 4).

Now consider ker(m) when n = 2. A matrix in this kernel has the form

142a+2bt  2c+ 2dt
X —
2e+2ft 1429+ 2ht
in addition to satisfying the congruences
(1+2a)(1+29) =1, 2b(1 +2¢g) + (1 + 2a)2h = 0 (modulo 4)
which is equivalent to
2a+2g =0, 2b+ 2h =0 (modulo 4).
Hence X € ker(m) () SLoZ/4[t]/(¢?) has the form

14 2a+2bt  2c—+2dt
X =
2e +2ft 14 2a+ 2bt
16



Next we observe that

14 2a + 2bt 2¢ + 2dt 14 2a’ +2b't 2¢ + 2d't
% +2ft 1+ 2a+ 20t % + 2t 1+ 2d + 2t
(14 2a + 2bt)(1 + 24’ + 2't) 2 + 2dt + 2 + 2d't

2e + 2ft +2¢' 4+ 2f" (14 2a + 2bt)(1 4 2a" + 2b't)
14 2a+2bt +2a’ +2b't  2c+2dt + 2¢ +2d't

2e + 2ft+2e' +2f't 14 2a+ 2bt + 2d' + 20't)

so that ker(m)()SLoZ/4[t]/(t?) is an abelian group isomorphic to
M2O]FQ X M20]F2

Next we examine how M{F, C Y3 oc MIF, = SL,7Z/2[t]/(t*) acts on
ker(m) (SLoZ/Alt]/(#?). MJF, is generated by the three matrices U, V, W

given by
10 0 1 00
(o) v=(ha) (V)

Hence U corresponds to the matrix

[ 1+t 0
o= (e
which lifts to

© (143t 0 -y [ 1+t 0
o= () o= )

We have

0 1+t % +2ft 1+ 2a+2bt 0 1+3t

14 2a + 2bt + 3t + 2at 2c + 2dt + 2ct <1+t 0 )
% 4 2ft + 2t 1+ 2a+2bt+1t+ 2at 0 13t
14 2a + 2bt + 3t 4 2at +t + 2at 2¢ + 2dt 4 2ct + 2ct
2e + 2ft + 2et + 2et 1+ 2a + 2bt +t + 2at + 3t + 2at
14 2a+2bt  2c+2dt

2e+2ft 1+ 2a+ 2bt
17



so that U acts trivially.
Similarly V' corresponds to the matrix

which lifts to

We have

01 % +2ft 1+ 2a+2bl
1+ 2a+2bt +2et 2¢c+ 2dt +t + 2at <1 3t>
2e + 2ft 1+ 2a + 2bt 01

14 2a + 2bt + 2et 2¢c+ 2dt +t + 2at + 3t + 2at

2e +2ft 14 2a + 2bt + 2et
1+ 2a + 2bt + 2et 2c+2dt
2e +2ft 14 2a + 2bt + 2et

Therefore V' acts trivially on the fibre group if 2¢ = 0 (modulo 4).
Similarly W corresponds to the matrix

which lifts to



We have

b1 % +2ft 1+ 2+ 2t L

14 2a + 20t 2¢ + 2dt 10
2e + 2ft +t+2at 1+ 2a + 2bt 4 2ct < 1>
14 2a + 2bt 4 2ct 2c+2dt
2e +2ft +t+2at + 3t + 2at 1+ 2a + 2bt + 2ct

1+ 2a + 2bt + 2ct 2c + 2dt

2e + 2f1 1+ 2a + 2bt + 2ct

Therefore W acts trivially on the fibre group if 2¢ = 0 (modulo 4).
Now consider the 2-cycles made from the matrices in SLyFy[t]/ (%)

1+t 0 1t
z = , and x =
0 1+t t 1
We lift = to

1+2a+2bt 2c+ (1+2d)t
X = € SL,Z/A[t])) (1)
2e+ (1+2f)t 1+2a+2ht

The conditions that X € SLyZ/4[t]/(t*) are
(14 2a)(14 2a) —2c-2e =1,
20(1 + 2a) + (1 + 2a)2h = (1 4 2d)2e + 2¢(1 + 2f) (modulo 4)

of which the first condition is satisfied automatically by X and the second is
equivalent to

20 + 2h = 2e + 2¢ (modulo 4)
SO we may write

1+ 2a + 20t 2¢ + (14 2d)t
X = € SLyZ/4[t)/ (t%)
2e+ (1+2f)t 14 2a+ (2¢+ 2b+ 2e)t
19



Next we must compute

XX
1+ 2a + 2bt 2¢+ (1+ 2d)t
2e+ (1+2f)t 14+2a+ (2¢+ 2b+ 2e)t
1+ 2a+ 20t 2c+ (1 4+ 2d)t
2+ (1+2f)t 1+2a+ (2c+2b+2e)t
1+ 2ct+2et 2+ (2c+ 2e)t

24 (2c+2e)t 14 2et + 2ct

We lift
1+t 0
z =
0 14t
to
1+2a+ (1+2b)t 2c +2dt
7 = € SLo7./4[t)/(t?)
2e +2ft 1+2a+ (3+2b)t

whose determinant is equal to

(1+2a)(1 4 2a+ 3t +2bt) + (1 +2b)t(1 + 2a + 3t + 2bt)
=1+ 2a+ 3t + 2bt + 2a + 2at + t + 2at + 20t

=1+4

so that Z € SLyZ/4[t]/(t%).
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Next we compute
Z -7

14+2a+ (1+20)t 2c + 2dt
2e +2ft 1+ 2a+ (3+20)t
14 2a+ (1+2b)t 2c+ 2dt
2e + 2ft 1+2a+ (3+20)t
142t 0

0 142t

Therefore choosing e = ¢ = 0 in the lift X we find that pairing with the
difference of our two 2-cycles yields

12 1+2t 0
Lo L € (My & My)spampn /()

which is non-zero!
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